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1. Introduction
Small deviations to perfect periodicity can have a

large influence on physical properties of crystals. The

color of minerals and the plasticity of metals, which
are prominent macroscopic properties, are due to
impurities and dislocations, which are microscopic
structural modifications. Among the techniques giv-
ing access to such small structural changes, X-ray
diffraction has an important place. Not only does
X-ray diffraction allow one to obtain the average
structure of materials, that is, the position of the
atoms in the unit cell, but it can also give valuable
information on tiny modifications of these positions,
through the study of out-of-Bragg scattering. This
scattering comes either from long-range-ordered
phases, whose structural properties are very close to
those of the parent phase, or from short-range order
originating from pretransitional fluctuations or dis-
order and giving rise to the so-called diffuse scatter-
ing. This review is devoted to the study of molecular
conductors by these methods.

In section 2, the basics of diffraction will be
recalled, following the best textbooks in the field.1-4

Special attention will be paid to distinguish between
the phenomena giving rise to small additional scat-
tering features, the displacement and the substitu-
tion disorder, and their potential coupling. The effects
of pretransitional fluctuations on the scattering will
be simply recalled.† Current address.
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Since the first diffuse scattering studies performed
on TTF-TCNQ,5,6 which provided evidence for the
Peierls instability, many original structural phase
transitions have been observed in molecular conduc-
tors, which are mainly due to their one-dimensional
(1D) character. For that reason, section 3 will be
devoted to the 1D physics, with special emphasis on
the many ground states newly discovered, involving
complicated mixing of 1D order parameters. Espe-
cially important is the role of the electron-phonon
coupling and the electronic interactions to interpret
these phases. A brief introduction of the Bechgaard
and the Fabre salts (the (TM)2X family) will be given
in section 4, before presenting the charge-density
wave-like instabilites, the anion ordering (AO) tran-
sitions, and the mixed states observed in the 2:1
charge-transfer salts. In this respect, this review will
attempt to complete with new results the already
published reviews on the structural instabilities of
the TTF-TCNQ family7 and the Bechgaard salts.8

Section 5 will focus on the effects of disorder on
the structural properties of molecular conductors.
The trivial fact that the building blocks of these
materials are heavy molecules and not atoms makes
easier the observation of disorder by diffuse scatter-
ing. This property allows one to improve our knowl-
edge of the disorder in these materials. In this
respect, a clear demonstration of the existence of
strong pinning in charge-density wave systems can
be obtained in molecular systems, while it is much
more difficult in other charge-density wave (CDW)
systems. The possibility to control the amount of
disorder is another asset of molecular conductors.
This made it possible to study and differentiate the
effect of anions or molecules on phase transitions in
the solid solutions of charge-transfer salts.

All these results show that very small modifica-
tions of either molecules or external parameters can
lead to completely different ground states. That is
the reason for the richness of the molecular conduc-
tors phase diagrams that every researcher in the field
knows.

2. X-ray Diffuse Scattering

2.1. X-ray Diffraction

When an X-ray beam impinges on matter, two
scattering processes occur. The incoherent Compton
scattering, in which electrons recoil due to the photon
impact, and the Thomson scattering, which is the
coherent scattering process of X-rays with matter.
Only Thomson scattering gives rise to interferences.
Due to the weak interaction between X-ray photons
and electrons, multiple scattering and the scattered
intensity with respect to the direct incident beam can
be neglected. This approximation, called the kine-
matic approximation, allows one to relate the total
electron density Fe(r) at the instantaneous positions
r to the differential scattering cross section (dσ/dΩ)
by the use of a Fourier transform (FT):

In this expression, bth ) 2.8 × 10-15 m is the Thomson
scattering length, Q is the scattering wave vector,
equal to the difference between the incident wave
vector and the scattered wave vector, and the quan-
tity expressed by the integral is the scattered am-
plitude A(Q). This quantity is related to the total
electron density by a Fourier transform, a linear
transformation which makes the scattering calcula-
tion tractable. In the case of a single atom, the
scattered amplitude is called the scattering factor,
noted f(Q). Note that, in the previous calculation, we
have implicitly assumed that X-rays are elastically
scattered, which is not strictly true: atoms are
moving and scatter X-rays inelastically. However,
X-ray frequencies are much larger (∼2 × 1018 Hz for
8 keV photons) than typical atomic vibration fre-
quencies (∼10 THz), so that in most experiments the
frequency shifts are not observable. This energy
integration of most X-ray detectors means that the
scattering cross section is in fact related to an equal
time correlation function, as eq 2.1 implicitly as-
sumes.

Let us now consider a perfect crystal, that is, a
crystal in which the N unit cells at position Ruvw )
ua + vb + wc are identical and contain atom i of
scattering factor fj at position rj. The scattered
amplitude reads

where F(Q) is the structure factor of the unit cell and
Σ(Q) is the form factor of the crystal. For large
enough crystals, this latter quantity is nonzero
only if

where a*, b*, and c* are the reciprocal lattice basis
vectors, defined by the well-known relations a*‚a )
2π, a*‚b ) 0, etc. When this condition is fulfilled, all
unit cells scatter in phase, resulting in a phenomenon
called diffraction. Intense X-ray beams are diffracted
in special directions, giving rise to Bragg spots on 2D
detectors, whose intensity is proportional to |F(Q)|2.
Measuring the integrated intensity of the maximum
number of these spots allows one to retrieve the unit
cell content. And when the quality of the data is very
good, the electron density of the unit cell can be
retrieved.9 This is the work of crystallographers.

2.2. Diffuse Scattering
However, perfection is not from our world. Even

in the best crystals such as silicon, the atoms are
moving around due to temperature, which causes
displacement disorder. In alloys or solid solutions,
sites may be occupied by different species, which
causes substitution disorder. In both cases, the scat-
tered amplitude reads

where Fuvw ≡ Fn now depends on the instantaneous
dσ
dΩ

) |bth∫Fe(r) exp(-iQ·r)d3r|2 (2.1)

A(Q) ) (∑
j

fj exp(-iQ·rj))∑
uvw

exp(-iQ·Ruvw) ≡
F(Q)Σ(Q) (2.2)

Q ) Qhkl ≡ ha* + kb* + lc* (2.3)

A(Q) ) ∑
n

Fn(Q) exp(-iQ·Rn) (2.4)
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content of the unit cell located at Ruvw ) ua + vb +
wc. The classical way to deal with this disorder
problem is to express the structure factor as

where 〈〈...〉n〉t indicates the spatial and time average.
Note that the recent use of coherent X-rays in
synchrotron radiation experiments10 allows one to
measure intensity variations in the millisecond or
even microsecond time range. This makes the time
average only effective in the fast time region (<1 ms).
This is not the case in the studies reviewed here, and
the averages will be simply noted by 〈...〉.

Substituting formula 2.4 in eq 2.1 with the use of
the above definition gives that the scattered intensity
is related to the FT of the pair correlation function:

The FT of the first term of this equation is the term
of diffraction, which gives the intensity of the Bragg
spots. It is due to the long-range order (LRO) present
in the crystal. The effect of disorder on this intensity
manifests itself by the presence of the structure factor
average 〈F(Q)〉. The most famous consequence is that
due to thermal agitation the atoms have a scattering
factor f exp(-M), where exp(-M) is the Debye-
Waller factor. This leads to a decrease of the intensity
by a factor exp(-2M).

The FT of the second term of eq 2.6 is the diffuse
scattering term. Its existence is due to the short-range
order (SRO) present in the crystal. As the total
number of electrons is the same in a disordered
crystal, the decrease of the Bragg reflection intensity
is compensated by the increase of this scattering,
usually not localized in the reciprocal space. The
intensity IDD(Q) of the diffuse scattering is given by

It is clear from this expression that only deviation
from the perfect periodicity (φn * 0) gives rise to
diffuse scattering. The study of this diffusion allows
one to study the disorder in materials.

2.3. Another Expression of the Diffuse Scattering
Intensity

Another expression of the diffuse scattering, due
to Krivoglaz,4 is very useful to deal with complex
cases of disorder, especially when substitution and
displacement disorders are coupled, as we will see
in section 5.

Let us consider a crystal containing two kinds of
atoms A and B, with scattering factors fA and fB, in
concentrations c and 1 - c, respectively. The substi-
tution disorder is described by the variable σn, which
is equal to 1 if site n is occupied by atom A and 0
otherwise. The atoms are displaced by the quantity
un. The scattering amplitude then reads

where ∆f ) fA - fB is the contrast term and fh ) cfA -
(1 - c)fB is the average structure factor. The final
expression of the scattered amplitude is obtained by
using the Fourier series of σn - c and un:

After some algebra,4,11,12 the intensity at the Qhkl +
q reciprocal position reads

This important formula allows one to clearly dif-
ferentiate the effects of the different types of disorder
and their coupling.

The first term

gives the intensity scattered in the case of a pure
substitution disorder. If there is no correlation be-
tween the A and B positions, which is very rare in
metals but observable in molecular systems (see
section 5), this expression reduces to c(1 - c)∆f 2. It
is called the Laue formula because Max von Laue was
the first to calculate this expression in the 1920s,1
at a time when diffuse scattering had still not been
observed. As expected, Isub cancels out when the order
is back, that is, when c ) 0 (no B atoms), c ) 1 (no A
atoms), or the contrast term ∆f is zero (A ) B). This
scattering is maximum at small angles.

The second term

gives the intensity scattered when a displacement
disorder alone is present. Each displacement mode
of wave vector q gives additional scattering at (q
from the Bragg reflections. This obviously applies to
thermal agitation. Qualitatively, it can be said that
each phonon of wave vector q participates at (q to
the cloud of diffuse scattering located around each
Bragg reflection. Through the scalar product Q‚uq,
the displacive term is proportional to the amplitude
of displacement squared, uq

2, and the scattering
vector squared, Q2. This means that this diffuse
scattering is not observable at small angles.

The third term

arises from the coupling between the substitution and
the displacement disorders. Indeed, this term cancels
out when the atomic displacements are independent
of the species (σ-quq ∼ ∑m〈σn - c〉〈un+m〉eiq‚Rm ) 0).
Contrary to the two previous terms, IA has a very
particular symmetry property which makes it unique
in diffraction theory:

This means that IA is asymmetric with respect to the
associated Q-Bragg reflection. This asymmetric effect
has been discovered in aluminum alloys containing

uq ) ∑
n

uneiq·Rn; σq ) ∑
n

(σn - c)eiq·Rn (2.9)

I(Q ) Qhkl + q) ) 〈|∆fσq + ifhQ·uq|2〉t (2.10)

Isub(Q ) Qhkl + q) ) ∆f2〈σqσ-q〉t (2.11)

Idis(Q ) Qhkl + q) ) fh2〈|Q·uq|2〉t (2.12)

IA(Q ) Qhkl + q) ) -2fh∆f Im〈σ-qQ·uq〉t (2.13)

IA(Qhkl + q) ) -IA(Qhkl - q) (2.14)

Fn(Q) ) 〈〈Fn(Q)〉n〉t + φn(Q) (2.5)

〈Fn
/(Q)Fn+m(Q)〉 ) |〈F(Q)〉|2 + 〈φn

/(Q)φn+m(Q)〉 (2.6)

IDD(Q) ) N∑
m

〈φn
/(Q)φn+m(Q)〉 exp(-iQ·Rm) (2.7)

A(Q) ) ∑
n

(∆f (σn - c) + fh)eiQ‚RneiQ‚un (2.8)
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Guinier-Preston zones.13 Indeed in this case, the
substituent atoms (e.g. Ag or Zn) regroup in small
clusters having a slightly different lattice parameter.
This originates the displacements/substitution cou-
pling. This effect has been differently explained in
textbooks.2,3 However, there is an elegant way to
understand it, based on the holographic diffraction
concept14,15 explained in section 5.4.

2.4. Phase Transitions
Structural phase transitions are common in mo-

lecular materials; it is then useful to rephrase the
expression of the scattered intensity by using the
classical concepts of phase transitions.16 Second-order
phase transitions are described by the temperature
behavior of an order parameter ηqc, which is zero
above the transition temperature Tc and nonzero
below. qc is the critical wave vector or propagation
vector, which characterizes the new type of LRO
stabilized below Tc. In the simplest case, the local
order parameter at position rn reads

In the case of a displacive phase transition, the
order parameter is the amplitude uqc of a displacive
mode. For an order-disorder phase transition, the
local order parameter can be defined as the deviation
of the average occupation of site rn by A from its
average value c, that is, 〈σn〉 - c. The amplitude 〈σqc〉
of this quantity is the order parameter. To go further,
one has to use the fluctuation-dissipation theorem,
which relates the fluctuations of the order parameter
to the response function or generalized susceptibility
ø(q). In Fourier space, this theorem reads

It is easy to see that for both types of phase
transitions (displacive or order-disorder) the scat-
tered intensity, given by eqs 2.11 and 2.12, is
expressed as

This means that, below the phase transition, the
new long-range order induces new spots in the
scattering pattern, usually called satellite reflections.
These reflections are located at (qc of the main Bragg
reflection, and their intensities are proportional to
the square of the order parameter 〈ηq〉 ) ηqc.

Above the phase transition only fluctuations sur-
vive (〈ηq〉 ) 0). (Fluctuations are indeed present below
Tc and give diffuse scattering around the satellite
reflections.) These fluctuations give rise to diffuse
scattering (there is only SRO) whose intensity is
proportional to Tø(q). I(q)/T versus T plots give the
temperature dependence of the susceptibility ø(q)
(see examples in Figures 9 and 10). In a mean-field
Landau-Guinzburg approach, this response function
reads

where êi are the correlation lengths in the i directions,
which diverge at the phase transition. In this ap-
proximation, the diffuse scattering has a Lorentzian
(Ornstein-Zernike) line shape, whose half-widths at
half-maximum (hwhm) are equal to ê. This line shape
is usually in good agreement with measurements. In
the real space, it means that the correlation function
of the order parameter follows

in an isotropic case.
More sophisticated theories of phase transition,

beyond the scope of this introduction, are however
needed to interpret high-resolution diffuse scattering
measurements close to Tc.16 This critical regime,
however, can be studied by scattering measurements,
and thermodynamic quantities such as the order
parameter, the generalized susceptibility, and the
correlation lengths can be measured by X-ray dif-
fraction experiments. Let us recall that, for second-
order phase transitions, the critical exponents â, γ,
and ν can be defined to describe the power-law
behavior of the three previous quantities as a func-
tion of the reduced temperature t ) (T - Tc)/Tc close
to Tc.

When the systems are very anisotropic, as is the
case for low-dimensional materials, the diffuse scat-
tering presents unique features easily shown by eq
2.17. For example, in purely 1D systems running in
direction b, there is no transverse correlation and
consequently êx ) êz ) 0. ø(q) has no structure in the
corresponding directions and is geometrically repre-
sented by a diffuse sheet of width êy

-1 in the recipro-
cal space. This diffuse sheet gives rise to diffuse lines
on X-ray photographs, as exemplified Figure 12.
These lines are typical of 1D instabilities.

Interestingly enough, the behavior of ø(q) is related
to the forces which trigger the phase transition. To
illustrate this idea, let us consider the simple Ising
model. Many systems containing spins or nonsym-
metric molecules (pseudospins) can be modeled by a
Ising model, in which a pseudospin variable Si is 1
or -1 according to the + or - orientation of the
pseudospin. The Ising Hamiltonian is

where Jij is the energy difference between +...- and
+...+ configurations. Jij can be directly calculated
from the knowledge of the interacting potential
between pseudospins. In the mean-field approxima-
tion, ø(q) simply reads

ηqc(rn) ) ηqc cos(qc‚rn + φ)

〈ηqη-q〉 - 〈ηq〉〈η-q〉 ) kBTø(q) (2.15)

I(Qhkl ( q) ) I(q) ∼ kBTø(q) + 〈ηq〉〈η-q〉 (2.16)

ø(q) )
ø(qc)

1 + (êxqx)
2 + (êyqy)

2 + (êzqz)
2

(2.17)

〈η(0)η(r)〉 ∼ 1
r

exp(-r/ê) (2.18)

ηqc ∼ |t|â for T < Tc (2.19)

ø(0) ∼ |t|-γ and ê ∼ |t|-ν for T > Tc (2.20)

H ) -
1

2
∑
i,j

JijSiSj (2.21)

ø(q) ) 1
kBT - J(q)

(2.22)
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where J(q) is the Fourier transform of the Jij con-
stants. In the case of first neighbor interactions

Close to the phase transition, the combination of eqs
2.17 and 2.22 yields

which shows that the correlation lengths are directly
related to the forces involved in the phase transition.
The study of diffuse scattering gives access to inter-
action energies in a solid. This was done for example
in molecular C60.17

Finally, let us mention that, in the presence of
impurities or defects coupled to the order parameter,
the nature of the fluctuations is changed and the
long-range order is generally lost. The term quasi-
phase transition is used to described a situation in
which, although no long-range order is actually
observed, the behavior of an order parameter, which
increases and saturates, can still be observed upon
cooling. However, there is no unified description of
the effect of disorder because many possible situa-
tions occur. In section 5, we will present cases where
random fields or random bonds are pertinent to
understand experiments at least qualitatively. Im-
purities can also pin the phase of the order parameter
and give rise to spectacular asymmetry effects. This
will be described in section 5.

3. Low-Dimensional Systems

3.1. Introduction to Organic Conductors
It is not the purpose of this paper to review the

history of molecular conductors. Nevertheless, it
should be said that the first molecular conductor
studies clearly showed their connection to low-
dimensional physics. Indeed, from the very begin-
ning, chemists and physicists had to address the
issues of 1D instabilities, either by studying them or
by trying to bypass them.

The first organic conductor was obtained in 1954
by exposing perylene to bromine.18 However, it is with
the discovery of the acceptor TCNQ (tetracyano-
quinone) in 196019 and the synthesis of the first
conducting compounds such as Qn-(TCNQ) that the
interest in this new type of materials awoke. TTF
(tetrathiafulvalenium) was synthesized in 1972,20 and
then it associated to TCNQ in the famous TTF-
TCNQ.21,22 The room-temperature conductivity of
TTF-TCNQ is 500 (Ω cm)-1 and exhibits a maximum
at 60 K just before a metal-insulator transition,
below which a charge-density wave state is stabilized.
(Note that TTF-TCNQ is not the most simple CDW
organic system. In fact, three structural transitions
occur successively below 60 K, the first one corre-
sponding to the Peierls transition mentioned here.7)
This phase transition, called the Peierls transition,
is an intrinsic consequence of the 1D nature of this
compound and of many organic compounds.

Indeed, as most of the molecules of organic conduc-
tors are planar, they stack in a direction where their
orbitals overlap. Such a chain, when it exists, can
present metallic properties, given some conditions,
which all influence the structural properties of the
chain:

(1) Charge carriers have to be addedseither elec-
trons to LUMOs (lowest unoccupied molecular orbit-
als) or holes to HOMOs (highest occupied molecular
orbitals). This can be achieved by a charge transfer
either from an acceptor to a donor, such as in TTF-
TCNQ, or from an inorganic anion X- (or a cation),
such as, for example, in Bechgaard salts (TMTSF)2X.
Note that, in the latter case, new structural instabili-
ties related to the anions will emerge, as will be
discussed in section 4.1.

(2) The conduction bandwidth has to be larger (or
of the same order of magnitude) than the Coulomb
energy between electrons, to avoid electronic (Mott)
localization. In organic conductors, the typical band-
width is 0.5-1 eV. On the other hand, the direct
Coulomb energy of two electrons separated by 3-7
Å (the size of typical inter- or intramolecular dis-
tances) is as large as 2-4 eV. However, as organic
molecules are highly polarizable, the Coulomb inter-
actions are screened and the Coulomb energy is
estimated to be about 0.3-0.5 eV.24 The similarity
between the band and the Coulomb energies is
responsible for the conducting properties of molecular
conductors, but it gives rise to new instabilities which
will be described in the following section.

(3) The crystal quality must be good, because 1D
systems are very sensitive to disorder. The stabiliza-
tion of a metallic state strongly depends on the
quality of the order in the material. This will be
discussed in section 5.

The previous conditions are generally fulfilled in
organic conductors. However, as we already men-
tioned, it is known from Peierls23 that a 1D electron
gas is unstable at zero temperature with respect to
the opening of a gap at the Fermi level. The Peierls
state was discovered in 1973 in the Krogman salt K2-
Pt(CN)4‚xH2O25 and observed soon after in transition
metal dichalcogenides,26 molybdenum blue bronze
K0.3MoO3,27,28 or trichalcogenides such as TaS3, Nb-
Se3, and (TaSe4)2I,29 to quote a few examples. To get
rid of this metal-insulator phase transition (and
disregarding the interest in studying this fascinating
phenomena), different strategies were used.

After the Peierls transition was discovered in TTF-
TCNQ,5,7 pressure was applied on the compound in
order to increase intrastack contacts and conse-
quently the dimensionality of the salts. These at-
tempts failed in TTF-TCNQ, which still exhibits a
Peierls transition up to 35 kbar,30 but were successful
in the Bechgaard (TMTSF)2X,31 the Fabre (TMTTF)2-
X,32,33 and the M(dmit)2 salts.35 In these series, the
metal-insulator phase transition disappears under
pressure, and a superconducting state is stabilized
at higher pressure.34

Another approach, actually similar to the previous
one, consisted of increasing the number of lateral
atoms in the molecule, to maximize intrastack con-
tacts and get more isotropic properties.36 The mol-

J(q) ) Jx cos qxa + Jy cos qyb + Jz cos qzc (2.23)

êx ) ax Jx

2kB(T - Tc)
(2.24)
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ecule which first allowed us to synthesize 2D systems
is BEDTTTF (bis(ethylenedithio)-TTF)37,34 (see Fig-
ure 1). With the exception of a few systems such as
(BEDT-TTF)2ReO4,37,38 where Peierls-like metal-
insulator transitions occur, structural 1D instabilities
are rare in this series. Indeed, phases in which the
BEDT-TTF molecules regroup in pairs are numerous
in BEDT-TTF systems, which renders this systems
more 2D than other molecular conductors. These
phases have the highest temperatures of supercon-
ductivity so far (Tc ) 12.8 K at 0.3 kbar in κ-(BEDT-
TTF)2Cu[N(CN)2]Cl), if we exclude the C60 phases.
Hundreds of new molecules have been synthesized,
but that is not the scope of this paper. Let us note
that even if many new compounds have been discov-
ered, old systems still hide their secrets.

3.2. Some Basic Theoretical Considerations

The physics of the 1D electron gas emerged in the
late 1970s,39,40 and its basic concepts are widely used
to interpret experimental results. We will give here
a simple presentation of the Peierls instability, its
modification when Coulomb interactions are taken
into account, and the effect of such phenomena on
structural phase transitions.

3.2.1. The Peierls Instability

The Peierls instability dominates 1D physics, even
if all aspects of 1D systems cannot be explained with
this concept. Let us consider a 1D energy band partly
filled (Figure 2a). In one dimension the charge
transfer F and the Fermi wave vector 2kF are simply
related by F ) 2 × 2kF. In 1955 Peierls showed23 that
at T ) 0 K this 1D electron gas is unstable with
respect to the opening of an energy gap 2∆ at the
Fermi level (Figure 2c). This instability is due to the

divergence of the electron-hole response function or
Lindhard function, which reads

where f(ε(k)) is the Fermi-Dirac distribution func-
tion and ε(k) is the dispersive electronic energy. As
it is well-known, this function diverges when part of
the Fermi surface nests with another one after a
translation of q. In one dimension this is achieved
when q ) 2kF, the nesting wave vector, but the
concept is still valid for quasi-1D systems, and even
some 2D systems.42,43

In the usual case, a resulting modulation of the
electron density of wave vector 2kF, named the
charge-density wave (CDW), is stabilized, associated
with a periodic lattice distortion of same periodicity.
This will be discussed later.

At the wave vector 2kF, the response function reads

where N(EF) is the density of electronic states at the
Fermi level and Ec is a cutoff energy close to the
Fermi energy EF. This expression clearly shows that
øe(2kF,T) diverges at T ) 0 K, which is consistent with
the Landau-Peierls theorem, which forbids any
phase transition at finite temperature for 1D sys-
tems. Before considering the transverse interactions,
which explain the occurrence of the Peierls transition
at finite temperature, let us first discuss the essential
role of the electron-phonon coupling.

In fact, pure CDWs are difficult to find (though an
example will be given in section 3.2.4). What is
usually called a CDW is the association of 2kF charge
and lattice modulations. In the classical Peierls
mechanism, electrons respond to the perturbation
caused by lattice vibrations, through the electron-
phonon coupling. The easiest way to introduce the
electron-phonon coupling is to make the electronic
energy dependent on molecular positions ui or in-
tramolecular deformations vi. Starting from the fol-
lowing Hamiltonian

Figure 1. Examples of donor and acceptor molecules.

Figure 2. (a) Electronic band dispersion ε(k) of a 1D metal
and (b) corresponding Fermi surface. The nesting wave
vector is indicated. (c) Band dispersion in the Peierls state.
(d) Schematic representation of a bond-order wave, consist-
ing of a charge-density wave F(x) and a lattice distortion
u(x) in quadrature.

øe(q,T) ) -∑
k

f(ε(k)) - f(ε(k + q))

ε(k) - ε(k + q)
(3.1)

øe(2kF,T) ) N(EF) log(Ec/kBT) (3.2)

H ) ∑
i,σ

εni,σ + ∑
i,σ

t(ci,σ
† ci+1,σ + ci,σci+1,σ

† ) + Hph (3.3)
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where ci,σ
† (ci,σ) is the creation (annihilation) operator

of a particle of spin σ (+ or -) at site i, ni,σ is the
density of spin σ electrons at site i, t is the transfer
integral between two neighboring sites, and ε is the
electronic site energy, the electron-phonon coupling
terms simply read

The first expression corresponds to the Holstein
case,44 while the second one is called SSH (Su-
Schrieffer-Heeger)45 and is the most common. Hph
is the phonon Hamiltonian, whose analytical expres-
sion is model-dependent. It can be written here

where K1 and K2 are elastic constants. Via the
coupling constants R and â, phonons induce a per-
turbation on the electron gas, which responds through
øe(2kF,T) by modulating its charge-density at 2kF in
order to screen the perturbation. This screening
softens a 2kF phonon mode, which increases its
amplitude and consequently the perturbation. This
feedback corresponds to the classical description of
the Peierls transition, which predicts the existence
of a soft mode in the vicinity of a phase transition.
Such a soft mode mechanism has been clearly ob-
served in K2Pt(CN)4Br0‚3×H2O46 and the blue bronze
K0.3MoO3

47 by inelastic neutron scattering (INS) but
not in TTF-TCNQ, the only organic conductor studied
by INS.46 (In this case the soft mode does not go to
zero frequency at the phase transition.46) Note that
this soft mode mechanism is possible because elec-
trons are faster than the phonon modes they have to
screen. This corresponds to the adiabatic limit.

The nature of the stabilized lattice distortion
depends on the type of coupling involved in the
transition. In the SSH case, the low-temperature
phase corresponds to a bond-order wave (BOW)
because the transfer integral t and, consequently, the
intermolecular distances are modulated (see Figure
2d). This corresponds to most experimental situa-
tions. In the Holstein case, a site CDW is stabilized,
in which the molecular charges are modulated and
intramolecular modes are involved. BOWs and site
CDWs do not have the same properties and can be
in competition. In this section, we will use the
notation q-BOW and q-CDW to note bond-order
waves and site charge-density waves of wave vector
q, respectively. In fact, the existence of mixed states
in organic compounds makes this distinction neces-
sary though cumbersome. Again, one has to keep in
mind that what is usually called a CDW, as observed
in K2Pt(CN)4Br0‚3×H2O, blue bronze K0.3MoO3, or
NbSe3, is a 2kF-BOW.

Whatever the nature of the CDW state, the gain
in electronic energy due to the gap opening (Ee ∼ -∆2

ln ∆) overcomes the loss of elastic energy due to the
periodic distortion (El ∼ ∆2). As mentioned previ-
ously, BOWs are frequent in organic compounds. In

TTF-TCNQ, the most important displacements are
acoustic-like,48 and they modulate the intermolecular
distances and consequently the transfer integral t.

It is also interesting to define the order parameter
of a CDW. In the case of a BOW, the CDW and the
periodic lattice distortion are in quadrature and read

At variance for site CDWs, the modulations are in
phase or out of phase with each other. Note that in
general the modulations are incommensurate so that
CDW has two degrees of freedom: its amplitude δF
and its phase æ. The order parameter is then δF exp
iæ.

The importance of the lattice in the Peierls transi-
tion leads one to define the lattice response function
øu(q,T), which can be measured by X-ray scattering.
Its mean-field expression is (from ref 41b, p 91)

where λq ) gq
2/pωq. gq is the electron-phonon cou-

pling, proportional to R (or â), and pωq is the energy
of the phonon mode coupled to the electrons. At
variance with the noncoupled case, this formula
allows one to define a finite temperature Tc

mf, called
the mean-field transition temperature, at which
øu(q,T) diverges. More precisely, numerical calcula-
tions24 show that above Tc

mf/3 a regime of amplitude
fluctuations is observed, while below this tempera-
ture only phase fluctuations are present. Tc

mf/3 is
thus close to the real phase transition temperature.
(Lee, Rice, and Anderson estimated this temperature
to be Tc

mf/4.49) Note that, in simple inorganic CDW
systems, øu(q,T) can be calculated from first prin-
ciples and compared to X-ray diffuse scattering
measurements.50

Although the longitudinal value of the CDW wave
vector is equal to 2kF, through the øe(q,T) divergence,
transverse interactions are responsible for its trans-
verse components. Three types of coupling are con-
sidered:

(1) The elastic coupling. Formula 3.9 shows that
even if øe(q,T) is purely 1D, the coupling constant λq
depends on the other directions. This mechanism is
generally neglected.

(2) The tunneling coupling (see Figure 3a). In the
presence of transverse transfer integrals, the Fermi
surface is slightly warped, which determines the
transverse components of the nesting wave vector.
This mechanism is present in quasi-1D systems such
as Bechgaard salts.

(3) The Coulomb coupling. Direct Coulomb interac-
tions between the charged CDWs are important to
consider. As shown in Figure 3b, they tend to induce
out-of-phase couplings between neighboring CDWs.
This mechanism is usually invoked for the CDW
transverse ordering in TTF-TCNQ and related com-
pounds.

ε ) ε0 + âvi (3.4)

t ) t0 + R(ui+1 - ui) (3.5)

Hph )
K1

2
∑

i
(ui+1 - ui)

2 +
K2

2
∑

i
vi

2 (3.6)

F(x) ) F0 + δF cos(2kFx + æ) (3.7)

u(x) ) u0 sin(2kFx + æ) (3.8)

øu(q,T) )
λq

pωq

øe(q,T)

1 - λqøe(q,T)
(3.9)
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Let us now consider the effect of Coulomb interac-
tions on 1D systems.

3.2.2. Electron Interactions
Luttinger Liquid. Many structural instabilities

are triggered by the electron interactions. It is thus
important to briefly describe the main results of the
complex theory of the 1D electron gas. Most impor-
tantly, electron interactions change the nature of 1D
instabilities. In three dimensions, a system of elec-
trons in interaction is a Fermi liquid: the ground
state is determined by the Fermi surface, and low-
energy excitations are quasi-particles, which can be
considered as noninteracting. In one dimension,
because of the divergence of the response function
øe(q,T) the Fermi liquid description in no longer valid
and other theories have to be found. The first theory
of the 1D electron gas was based on the g-ology
framework in which electron interaction is described
by scattering terms of amplitude gi.39 (In a 1D elec-
tron gas, two electrons on the left side (impulsion
-kF) or right side (impulsion kF) of the Fermi surface
interact with scattering terms of amplitude gi. g1
is the backward scattering constant, (kF; -kF) f
(-kF; kF), g2 is the forward scattering one, (kF; -kF)
f (kF; -kF), and g4 describes the (kF; kF) f (kF; kF)
scattering. At half-filling, the Umklapp scattering (kF;
kF) f (-kF; -kF) is possible and described by g3.) The
electronic dispersion E(k) is then linearized around
the Fermi energy.

The main instabilities are determined by a pertur-
bative approach. However, this method could not deal
with strong coupling. The most successful method to
address this issue is the description in terms of the
Luttinger liquid, which is now the framework of the
1D electron gas.51-54 Indeed, for certain values of the
gi constants, the interaction Hamiltonian can be
solved exactly. (Two models can be solved exactly:
the Tomonaga-Luttinger model, which corresponds
to g1 ) g3 ) 0, and the Luther-Emery model, which
corresponds to a special value of g1 < 0.) This
so-called Tomonaga-Luttinger model is the starting
point of the model called a Luttinger liquid, by
analogy to the 3D situation. In this model, low-energy
excitations are collective spin or charge excitations.
Figure 4 indicates regions where charge-density
waves (CDWs), spin-density waves (SDWs), and
singlet (SS) or triplet (ST) superconductivity are
dominant. These regions are mainly determined by
the knowledge of the relative compressibility of the
electron gas KF, which depends on the interaction

constants gi. KF decreases when the strength and the
range of the interactions increase. For attracting
(repulsive) interactions, one has KF g (e)1, with the
noninteracting case corresponding to KF ) 1. For
repulsive interactions, density-wave instabilities ap-
pear. Remarkably, the response functions of these
instabilities are power laws (and not logarithmic
ones), whose exponents depend on KF (see for example
eqs 3.10 and 3.11). Moreover, the Luttinger liquid
exhibits charge and spin separation and the absence
of a Fermi edge.54 These properties invalidate the
Fermi liquid theory at one dimension.

Note that in this approach an electron (Mott)
localization is observed if KF is smaller than a value
depending on the band filling. For quarter-filling, this
value is KF ) 1/4, which corresponds to strongly
repulsive interactions, and for half-filling, KF ) 1.55

When the system is localized, charge excitations are
frozen but the spins are still described by a Luttinger
liquid.

The Luttinger liquid model is considered as rel-
evant to describe the high-temperature phases of
some organic conductors such as Bechgaard and
Fabre salts, but the question is still a matter of
debate.51,56 Note that this theory does not distinguish
between BOWs and CDWs, which is important to
interpret experiments. Specific models such as the
Hubbard model are more adapted to these situations.

One of the most important results is that electron
interactions give rise to new instabilities. The 2kF-
SDW corresponds to the modulation of the spin
density at the 2kF wave vector and is dominant in a
region where KF j 1. 2kF-SDWs are indeed observed
in many molecular conductors. As the average dis-
tance between electrons is 2π/4kF in one dimension
(F ) 4kF), 4kF-BOW or 4kF-CDW instabilities natu-
rally appear when interactions increase.57 Note that
in commensurate cases a 4kF-CDW corresponds to a
charge ordering (CO), which induces a charge dis-
proportionation on the molecules.

Figure 3. (a) Fermi surface of a quasi-1D metal. The
transverse component of the nesting wave vector, indicated
in red, depends on the exact shape of the Fermi surface.
(b) Schematic representation of two out-of-phase CDWs.
In this situation, Coulomb energy between the CDWs is
minimized.

Figure 4. Schematic phase diagram of a correlated 1D
electron gas off half-filling as a function of KF. Dominant
and subdominant (logarithmically weaker, in parentheses)
instabilities are indicated. Adapted from ref 51.
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An elegant way to describe these instabilities is to
express the 2kF and 4kF response functions as a
function of KF; one finds

It is clear from these expressions that øe(4kF,T)
diverges if interactions are strong enough, that is, if
KF e 1/2, and dominates øe(2kF,T) if KF e 1/3. The best
experimental examples are in the TTF-TCNQ se-
ries.7,58 4kF instabilities are considered as the best
evidence of electron interactions in these systems59

and can be interpreted at least qualitatively in the
framework of the Luttinger liquid.

The Hubbard Model. A simpler model has been
developed and largely used to describe strongly
correlated systems such as organic conductors: the
Hubbard model.61 In this microscopic model, the
electronic Hamiltonian reads

where U is the on-site Coulomb energy and Vj is the
Coulomb energy between jth neighbors. (When the
Vj are considered, one speaks of an extended Hubbard
model.) Even in this simple case, an exact solution
has only been found in the Vj ) 0 and T ) 0 K case.62

This solution shows that the system is metallic except
in the half-filling case, where localization occurs as
soon as U * 0 (4kF-CDW). Numerical methods are
thus necessary to study the model at nonzero tem-
peratures or in the presence of nearest neighbor
interactions.

As suggested by the exact solution, if U, V , t
(weak coupling), the system is metallic but develops
new instabilities such as 2kF-SDW. In the other limit
of strong coupling (t , U, V), the effect of interactions
is to localize the electron (4kF-CDW). In the half-
filling case, this favors the singlet state called spin-
Peierls. The three ground states 2kF-SDW, 4kF-CDW,
and spin-Peierls are typical of an interacting 1D
electron gas on a lattice. But they depend in a subtle
way on the interactions and the band filling.

Numerous numerical simulations have been per-
formed on the extended Hubbard model. Let us
mention the work of Hirsch et al.,57,64,65 in which the
purely electronic CDW, BOW, and SDW response
functions have been computed, without considering
the lattice. However, as we have seen, the electron-
phonon coupling can modify the results, but the
results are model-dependent. Many publications
present zero temperature computations taking into
account the lattice, to match as closely as possible
the experimental situation.60,66-69,71-73

3.2.3. Half-Filling and Spin-Peierls Phase Transition
In the half-filling case (F ) 1) there is one electron

per site. The effect of U is to localize electrons on each
site and to form a 4kF-CDW.62 When the interaction

U is much larger than t, it can be shown63 that the
system is equivalent to a system of localized spins,
antiferromagnetically coupled by an exchange inte-
gral J ) 4t2/U. The ground state is antiferromagnetic
(2kF-SDW). When U is small and increases, the
electron localization kills the divergence of the 2kF-
CDW response function: the two states are incom-
patible.64 (For a half-filled band the Umklapp term
g3 is responsible for the electron localization in
competition with the 2kF-CDW instability.82) At vari-
ance, V favors the 2kF-CDW at the expense of the 2kF-
SDW. The U ) 2V relation separates the two ground
states, which are also incompatible.65 (Note that
recent calculations on half-filled nanorings in the
presence of SSH coupling indicate the possibility of
CDW/SDW coexistence.70)

When the electron-phonon coupling is considered,
the 2kF-BOW plays a special role at half-filling. If
electrons are localized by strong interactions, a 2kF-
BOW transforms the system into an antiferromag-
netic chain with alternating exchange integral J. In
that case, the ground state is a macroscopic singlet
state, with a singlet-triplet gap in the spin excita-
tions: this is the spin-Peierls (SP) state. This name
reminds us that the Peierls-like 2kF-BOW triggers
the instability and that spin pairing plays the central
role: the gain of energy is due to the decrease of the
magnetic excitations across the gap. In SP phases,
the singlet-triplet gap is measured by magnetic
susceptibility or inelastic neutron scattering. In the
“textbook” case we have described, the temperature
dependence of the spin susceptibility follows the
Bonner-Fisher law of a quantum S ) 1/2 chain74,75

and then decreases exponentially below the spin-
Peierls transition. Such an example of an SP phase
has been discovered in the CuGeO3 oxide.77-79 The
SP states observed in organic compounds are better
described by a quarter-filled approach.

3.2.4. Quarter-Filling and Molecular Systems

An important feature of half-filled systems is that
theoretically CDW, BOW, and SDW cannot coex-
ist.60,69 From a general point of view,60 the phase
diagrams of quarter-filled systems are more complex
because coexistence between these states is possible.
Figure 5 presents some examples of such mixed
ground states experimentally observed.

The connection between the extended Hubbard
model and the Luttinger liquid model has been
performed by Mila et al.80 At quarter-filling the
gi constants are g1 ) U, g2 ) U + 2V, g4| ) 2V, and
g4⊥ ) U + 2V. Numerical calculations show that in a
(U, V) domain such that V < 2t the compressibility
coefficient verifies 0.25 < KF < 0.9. From the diagram
of Figure 4, the 2kF-CDW, 4kF-BOW, and 2kF-SDW
instabilities are expected in this domain.

To describe all the ground states observed in
molecular conductors, a quarter-filled approach is
more consistent. However, the spin-Peierls transition,
typical of half-filling systems, is stabilized in some
of these systems. This SP state is observed when
electrons are localized either in a 4kF-BOW or in a
mixed 4kF-BOW/CDW. The first situation is found in
the TTF-CuBDT74,83 compounds (in which the SP

øe(2kF,T) ) N(EF)(Ec/kBT)1-KF (3.10)

øe(4kF,T) ) N(EF)(Ec/kBT)2-4KF (3.11)

He ) ∑
i,σ

t(ci,σ
† ci+1,σ + ci,σci+1,σ

† ) +

U∑
i

ni,vni,V + ∑
i,j

Vjninj (3.12)
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transition was discovered), MEM-TCNQ84,85 and the
(BCPTTF)2X.141,142 Fabre salts (TMTTF)2PF6,AsF6
correspond to the second class,87-89 which will be
discussed later.

We will also show that 2kF-BOW fluctuations can
transform into spin-Peierls ones,160 showing that the
two types of fluctuations can be described by the
same physics.

4. Experimental Results: Structural Instabilities

4.1. The (TM)2X Series
Given the number of papers devoted to the study

of Bechgaard and Fabre salts (which will be noted
(TM)2X for simplicity), these materials can be con-
sidered as the prototype of quasi-1D organic sys-
tems.34,56 In this section, we will present some new
structural properties which have been obtained in the
past few years. However, more details will be found
in ref 8.

4.1.1. Basic Structure of Bechgaard and Fabre Salts

(TM)2X salts are all isostructural. The space group
is P1h.92 Molecules stack in the a direction (a ∼
7.5 Å) (see Figure 6) and form conducting chains. The
chains regroup in (a, b) slabs separated by anions in
the b direction. The highest conductivity is observed
in the a direction (500-800 (Ω cm)-1 in selenied salts,

50-100 (Ω cm)-1 in sulfur salts). In this direction the
molecules are related by an inversion center and
anions are located in centrosymmetric cavities. A
three-quarter-filled band is expected from the 2:1
stoichiometry, but the real band filling is formally
half, because the unit cell contains two molecules.

Contrary to charge-transfer salts such as TTF-
TCNQ, (TM)2X salts are slightly dimerized. This
dimerization is weak but important, because it cor-
responds to a 4kF-BOW which can localize elec-
trons.73,90,91 This dimerization is usually characterized
by 2(d1 - d2)/a, where d1 and d2 are the average
distances between molecules along the chains
(2(d1 - d2)/a ∼ 0.8% for (TMTTF)2X for example).
However, the parameter which affects the electronic
properties is the difference between transfer integrals
along the chain.8 Indeed, it contributes with the
external anion potential to the zone boundary gap
at (π/a.8

These integrals have been calculated in the ex-
tended Hückel framework.93,94 With this definition of
the dimerization, it is found that it is larger in the
TMTTF salts than in the TMTSF ones, that it
decreases when the lattice contracts (at low temper-
ature or high pressure), and that it depends on the
anion X (it decreases according to the sequence
PF6 f ClO4, ReO4 f NO3, Br). This structural
dimerization seems to be due to the steric constraint
given by anions.8

The geometry of the X anions can be spherical (Br),
octahedral (PF6, AsF6, SbF6), tetrahedral (ClO4, BF4,
ReO4), triangular (NO3), or linear (SCN). A specificity
of the (TM)2X salts is that nonsymmetrical anions
are always disordered at room temperature8 and that
they undergo order-disorder phase transitions. This
is not the case for all 2:1 charge-transfer salts.

4.1.2. Phase Diagram

A generalized pressure-temperature phase dia-
gram of the (TM)2X series has been proposed,56 where
the main salts of the series find a place according to
their ambient pressure ground state. New results on
(TMTTF)2PF6

32,33 confirmed that all the main ground
states of the salts can be found in the same com-
pound. Such a diagram is presented in Figure 8. On

Figure 5. Schematic representations of some mixed ground states. Open (colored) circles represent the minima (maxima)
of the site CDW, and dashed (double) lines represent the minima (maxima) of the BOW. Blue (orange) is for 2kF (4kF)
modulations. The second row represents spin-Peierls states observed in quarter-filled organic systems and in the half-
filled oxide CuGeO3, for comparison.

Figure 6. Side view of (TMTTF)2PF6. The a axis is
vertical. (Courtesy of Jean-Jacques Riquier.)
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the left side, electronic localization occurs at
∼200 K, then CO is observed and the SP transition
is stabilized below 18 K. At higher pressure, a
localized antiferromagnetism appears and a 2kF-SDW
is stabilized. Finally, between 4 and 7 GPa, (TMTTF)2-
PF6 exhibits superconductivity. According to ref 56,
the high temperature-low pressure part of the
diagram is correctly described by a Luttinger liquid
while at higher pressure a Fermi liquid picture is
more appropriate.

Indeed, this phase diagram, together with the
theoretical considerations mentioned previously,
makes it clear that electronic interactions are crucial
in the understanding of the physical properties of
(TM)2X. From optical reflectivity measurements,81

Mila80 estimated the basic parameters t2/t1, U/t1, and
V/t1 of the extended Hubbard model in two important
compounds (see Table 1). These results, compared to
the numerical computations of ref 66, give KF ∼ 0.45
for (TMTSF)2ClO4 and KF ∼ 0.3 for (TMTTF)2PF6.
According to the general results of Figure 4, these
compounds would be in a region where 2kF-SDWs,

2kF-CDWs, and 4kF-CDWs are in competition, which
is consistent with the experimental results (see
section 4.1.6). Note, however, that another estimation
gives KF ∼ 0.22-0.23 for (TMTSF)2PF6.56

Finally, note that this phase diagram does not take
into account the anions. Moreover, the recent obser-
vation of ferroelectricity (FE) and anti-ferroelectricity
(AFE)100-102 makes this phase diagram more complex,
as discussed in the next sections.

4.1.3. Structural Instabilities
Some members of the (TM)2X family exhibit typical

1D structural instabilities. In (TMTSF)2PF6 and
AsF6, diffuse lines at the 2kF ) π/a reduced wave
vector have been observed by X-ray measurements,96

below 150-175 K (see Figure 9). Such lines are clear
signatures of a 2kF-BOW because they are visible at
wide angles. [BOWs, which are displacement modu-
lations, give rise to wide angle diffuse scattering (eq
2.12), while pure CDWs contribute to small angles,
because they modulate the electron density (eq 2.11).]
From this point of view, these fluctuations are similar
to the ones observed in TMTSF-TCNQ,97 but they do
not diverge toward an ordered 2kF-BOW ground
state. Indeed, the widths of the diffuse lines give
maximum correlation lengths of ∼10 Å, and their
intensity decreases below 50 K. This corresponds to
the temperature at which 2D or 3D SDW fluctuations
observed by NMR98 build up. This does not mean that
the 2kF instabilities vanish, because 2kF-CDW satel-
lite reflections have been observed at lower temper-
ature, in the SDW phase, as we will describe in
section 4.1.6.

At first sight, the behavior of (TMTTF)2PF6 seems
different. A charge localization is first observed at
TF ∼ 200 K88 with a charge gap ∆F ∼ 600 K.88,104 This
localization is not associated with a phase transition

Figure 7. Schematic representation of the anions and their environment in (TMTTF)2PF6. Short F-S contacts are indicated.

Figure 8. Generalized phase diagram (T, p) of the (TM)2X
salts. M-I is the Mott-Hubbard localized state, M the
metallic phase, SC the superconducting phase, AF the
antiferromagnetic phase, and CO the charge ordering
phase. The pressure values correspond to the (TMTTF)2PF6
phase diagram,33 except for the CO domain, which has been
inferred from the (TMTTF)2AsF6 data of ref 95.

Table 1. Estimation of the Basic Parameters t2/t1, U/t1,
and V/t1 of the Extended Hubbard Model in the
(TMTSF)2ClO4 and (TMTTF)2PF6 Compounds
(Data from ref 80)

t2/t1 U/t1 V/t1

(TMTSF)2ClO4 0.9 5.0 2.0
(TMTTF)2PF6 0.7 7.0 2.8
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and is usually interpreted as a 4kF-BOW, which has
the periodicity of the main lattice. Below 70 K, diffuse
lines at the 2kF ) π/a reduced wave vector are
observed,87 indicating the presence of 2kF-BOW fluc-
tations. These fluctuations diverge at TSP ) 18 K, as
indicated by the presence of satellite reflections at
the (1/2, 1/2, 1/2) reduced wave vector below TSP. This
phase has been impossible to study by X-ray diffrac-
tion because of irradiation damage,87 but it has been
recently shown by neutron scattering that these
satellite reflections condense below TSP, indicating
definitely that it is a SP transition.99 The observation
of 2kF-BOW diffuse lines clearly demonstrates the 1D
character of the electron gas in TMTTF salts.

An intermediate behavior has been observed in
(TMDTDSF)2PF6 in which 2kF diffuse lines (see
Figure 9 and section 5.3.1) are observed from 150 K
down to 20 K. Below this temperature 2kF-SDW
fluctuations begin to diverge,153 and the intensity of
the lines decreases by a factor of 2. The 3D ordering
of 2kF-SDWs is not achieved, however, probably
because of the molecular disorder. This shows that
there is a continuity between the 1D instabilities of
(TMTSF)2PF6 and (TMTTF)2PF6. The 2kF-BOW fluc-
tuations of (TMDTDSF)2PF6 have a mixed CDW-SP
character.

These observations show that although the 2kF-
BOW instability is present in the (TM)2X family, it
can only give rise to the SP ground state. Indeed, in
the metallic part of the (TM)2X diagram it is killed
by 3D 2kF-SDW fluctuations, while in the left part
of the phase diagram it is in competition with another
newly discovered instability, the 4kF-CDW charge
ordering. This is consistent with the study of (TMTSF/
TMTTF) solid solutions (see section 5.3.3) and sub-
stituted perylene salts (see section 5.2), in which the
occurrence of a 4kF-CDW clearly suppresses the 2kF-
BOW divergence.

4.1.4. Charge Ordering Transitions
The discovery of CO transitions in Fabre salts has

been one of the most surprising results of the past
few years. In 1984, a metal-insulator phase transi-
tion was observed at 154 K in (TMTTF)2SbF6, with-
out any observable structural change.104 These so-
called “structureless” transitions were recently dis-
covered in (TMTTF)2PF6, AsF6, and ReO4, at 70, 100,
and 225 K, respectively, and recognized to correspond
to FE.100 Indeed, dielectric permittivity100 and NMR
measurements101 in (TMTTF)2PF6, AsF6, SbF6, and
(TMTTF)2ReO4, SCN compounds,103 lead to the con-

clusion that these FE (q ) 0) and AFE (q * 0) states
(in (TMTTF)2SCN) are associated with a charge
ordering (CO) and result from the loss of the sym-
metry center relating the molecules of the chain. CO
gives rise to small though visible anomalies on
resistivity curves.104,100 The CO can be interpreted as
the stabilization of 4kF-CDWs either in phase in all
the transverse directions (FE case) or out of phase
in some transverse directions (AFE case).

However, even if internal deformations of the
molecules are expected, diffraction105 and absorption
methods106 have failed to evidence structural modu-
lations associated with the FE CO transition.105

Such deformations have been clearly measured in
(TMTTF)2SCN,107 where the AFE CO phase corre-
sponds to the appearance of (0, 1/2, 1/2) satellite
reflections. In that case, the charge disproportion-
ation resulting from the CO was found to be ∆F )
0.15 (half the difference between the charge of the
two molecules). Transfer integral dimerization de-
creases at the transition, indicating the competing
character of the 4kF-CDW and 4kF-BOW order pa-
rameter, which is in agreement with the numerical
calculation of ref 72.

In substituted perylene salts (TMP)2X-S (X ) PF6,-
AsF6)108,109 (see section 5.2), a 4kF-CDW was clearly
evidenced by a combination of X-ray and 13C NMR
techniques. This 4kF-CDW corresponds to the same
type of CO discussed here. More recently, CO transi-
tions have been observed in other salts, like (DI-D-
CNQI)2Ag,110 θ-ET2MM′(SCN)4,111,112 R-(BEDTTTF)2-
I3,114,113 and â-(BEDTTTF)2AsF6 and PF6.115 Note that
the surprising alternation of TMTSF and TMTTF
molecules found in the solid solutions (TMTSF)1-x-
(TMTTF)xReO4

116 can also be considered as a charge
ordered 4kF-CDW. This will be discussed in section
5.3.3.

To conclude this section, let us note that in 2:1
charge-transfer salts the difficulty of finding q ) 0
CO or more generally 4kF-CDWs or 4kF-BOWs by
structural methods comes from the triclinic sym-
metry of most salts: the CO (4kF-CDW) only breaks
the inversion center (and leads to a real phase
transition), while the dimerization (4kF-BOW) does
not break any symmetry. In this respect the best
evidence of charge ordering has been brought by
NMR measurements95,101,109,111,114 (and see section
5.2). Overcoming this difficulty is not trivial because
it requires the synthesis of more symmetrical salts,
such that 4kF-CDWs or 4kF-BOWs break another
symmetry element. To our knowledge, only two 2:1

Figure 9. Temperature dependence of the intensity (open circles) and the hwhm (closed circle) of the 2kF diffuse lines in
(TMDTDSF)2PF6 (top) and of the 2kF response function ∼I/T in (TMTSF)2PF6 and (TMTTF)2PF6 (bottom).
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charge-transfer salts satisfy such a requirement: (i)
(EDT-TTF-CONMe2)2AsF6,117 in which a glide plane
ensures the uniform stacking, and (ii) the monoclinic
form of the (DMtTTF)2X series, obtained with X )
ReO4 and ClO4,12 in which a 21 screw axis plays this
role. The former compound is localized at ambient
temperature, while the later ones exhibit a charge
localization at about 150 K. Consequently, such
compounds with uniform stacks are really quarter-
filled, even though the real periodicity of the chain
is still twice the intermolecular distance. Let us insist
on the fact that in such cases any kind of electronic
localization coupled to the lattice should break this
“quarter-filled symmetry”. Indeed, a charge dispro-
portionation would make the sites (molecules) in-
equivalent, while a dimerization will unsymmetrize
the bonds. Contrary to this expectation, however, it
has been shown that (DMtTTF)2ClO4 exhibits a
complex incommensurate short-range order modula-
tion below the charge localization, which has been
interpreted as AFE in nature.106

A simple extrapolation of the CO domain phase
boundaries of the diagram in Figure 8 shows that in
the “negative” pressure range this phase should
dominate the SP state (2kF-BOW) and the electron
localization (4kF-BOW). In this respect, it is interest-
ing to note that in compounds with large anions such
as SbF6 and ReO4, which could induce such a “nega-
tive” pressure, the CO transitions are observed at
higher temperature than those of the AF state and
the (1/2, 1/2, 1/2) AO, respectively. Finally, it has been
suggested that the CO transition should be coupled
to anionic displacements,73,102 the same way the
orientation of non-centrosymmetrical anions is coupled
to electronic degrees of freedom. This is the subject
of the next section.

4.1.5. Role of Anions
In (TM)2X salts, anions play an important role to

ensure the charge transfer but also because they
induce a 4kF potential along the chains of mol-
ecules.90,91 This is clearly seen in Figure 7, where the
PF6 anions and their nearest neighboring molecules
are represented. In particular, the F atoms of the PF6
anions (or the O atoms of ReO4) have close contacts
with the S (or Se) atoms of the molecules. Depending
on the stength of this potential, numerical calcula-
tions show that 4kF-BOWs or 4kF-CDWs can be
stabilized.73 Both instabilities have now been ob-

served in the (TM)2X salts. The role of this 4kF
potential on the 2kF-BOW instability has also been
questionned.82 Note that the study of the CO transi-
tion and the solid solution (TMTSF/TMTTF) clearly
shows that the 4kF-CDW decreases the 2kF-BOW
response function.73

Structural studies show that non-centrosymmetri-
cal anions can have two orientations in the unit cell
and are disordered at high temperature. Anion
ordering phase transitions are observed, with a
reduced wave vector which depends on the anion and
the molecule.8 Some characteristics of anion ordering
transitions are indicated in Table 2.

Some of these phase transitions are strongly coupled
to the electronic degrees of freedom and have a
drastic influence on the physical properties. The AO
at 176 K in (TMTSF)2ReO4 correponds to a metal-
insulator transition.86 This transition stabilizes the
(1/2, 1/2, 1/2) wave vector, which means that the anion
orientations alternate in the three directions of the
unit cell. It can be considered as a generalized Peierls
transition, because the component of the wave vector
along the chain (a direction) corresponds to 2kF.
Under pressure, the metallic state is recovered and
another AO at the reduced wave vector (0, 1/2, 1/2) is
observed.154 The electronic degrees of freedom are
slightly affected by this AO, which confirms the
importance of the 2kF component. However, the
stabilization of an (1/2, 1/2, 1/2) AO is not sufficient to
induce an insulating state: this is the case of
(TMTSF)2NO3. This clearly shows that the strength
of the anion-donor coupling is another relevant
parameter of AO.

The study of AO transitions has shown that the
driving forces of these transitions are both direct
(mainly electrostatic) and mediated by the electron
gas of the organic chains. More details can be found
in ref 8. Finally, note that such transitions can be
easily modeled by an Ising model, already introduced
in section 2.4. This modeling will be used in sec-
tion 5.

4.1.6. Mixed States BOW−CDW−SDW
As shown previously, the phase diagram (TM)2X

has turned out to be more complicated than first
believed. In particular, the discovery of CO transi-
tions in the S-based salts has shown that the ground
states are in fact mixed states, in which different
possible order parameters of the 1D theory are

Table 2. Reduced Wave Vector qAO and Transition Temperature TAO of the Anion Ordering Transitions Observed
in the (TM)2X Compounds for Various Anions

(TMTSF)2X (TMDTDSF)2X160 (TMTTF)2X

X TAO/K qAO TAO/K qAO TAO/K qAO

ReO4 176 (1/2, 1/2, 1/2)86 165 (1/2, 1/2, 1/2) 154 (1/2, 1/2, 1/2)119

240 (0, 1/2, 1/2)154

(17 kbar)
BF4 36 (1/2, 1/2, 1/2)118 22 (1/2, 1/2, 1/2) 40 (1/2, 1/2, 1/2)121

quasi-phase transition
ClO4 24 (0, 1/2, 0)120 local order (1/2, 1/2, 1/2) 40 (1/2, 1/2, 1/2)87

NO3 41 (1/2, 0, 0)86 local order (1/2, 0, 0) 50 (1/2, 0, 0)121

SCN 90 (0.48, 0.35, 0.1)122 160 (0, 1/2, 1/2)124

FSO3 87.5 (1/2, 1/2, 1/2)121 58 not known
PF2O2 136.3 (1/2, (1/4, 0)

135.3 (0, 1/2, 1/2)123

Study of Molecular Conductors by X-ray Diffuse Scattering Chemical Reviews, 2004, Vol. 104, No. 11 5621



stabilized simultaneously. Such mixed states are also
observed by X-ray diffraction in the TMTSF series,
which confirms these conclusions.

In (TMTSF)2PF6, the metal-insulator phase tran-
sition observed at TSDW ) 12 K corresponds to a 2kF-
SDW state, as evidenced by spin susceptibility ani-
sotropy,125 observation of antiferromagnetic reso-
nance,126 and NMR and Muon Spin Resonance (µSR)
measurements.127 Direct determination of the mag-
netic wave vector qSDW has failed, mainly because of
the small size of the samples. However, it has been
possible by NMR experiments to estimate that the
reduced wave vector is qSDW ) (0.5, 0.20 ( 0.05, ?)129

or (0.5, 0.24 ( 0.03, -0.06 ( 0.20).130

The X-ray studies of these SDW phases are de-
scribed in detail in ref 8. Let us just summarize here
the results.

(1) In (TMTSF)2PF6, satellite reflections at the
reduced wave vector q1 ) (0.5 ( 0.05, 0.25 ( 0.05,
0.25 ( 0.05) and q2 ) 2q1 have been observed in the
SDW state. These observations have been confirmed
by Kagoshima et al.,137 who show furthermore that
the reflections disappear below 3.2 K. Such satellite
reflections were also observed in (TMTSF)2AsF6.137

In (TMTSF)2Br, satellite reflections on the h ) odd
main Bragg layer are observed in the AF state.8

(2) The location of the satellite reflections does not
correspond to the 2kF-BOW diffuse lines already
mentioned. Their intensity is very weak (∼10-5 of the
(101h) reflection). They are observed at small angles
(except for (TMTSF)2Br). The features suggest that
the origin of these reflections is pure CDWs. The
ground state of (TMTSF)2PF6 would be a mixed state
4kF-CDW/2kF-CDW/2kF-SDW, as depicted in Figure
5. From the satellite reflection intensities, the am-
plitude of the CDW can be estimated to be 0.1 e,128,133

which is consistent with the SDW amplitude of
0.08 µB obtained by NMR. For (TMTSF)2Br, a 4kF-
BOW/2kF-SDW mixed state is consistent with the
observations, which is similar to the situation ob-
served in chromium.134

Such mixed states could be a clue to understand
the discrepancies with the standard SDW theory, like
the weak first-order character of the transition127,131

or the effective mass enhancement of the SDW.41a

More recently, a similar 2kF-CDW/2kF-SDW mixed
state has been suggested in R-(BEDT-TTF)2MHg-
(SCN)4 (M ) K, Rb).136

From a theoretical point of view, let us mention
first that Overhauser135 had already predicted 2kF-
CDW/2kF-SDW mixed states, that he described phe-
nomenologically by the superposition of two 2kF-
CDWs of opposite spins.8 Many theoretical works
have been devoted to the mixed state.60,69,138-140 All
these works show that only quarter-filled models
with second neighbor Vi electron interactions can
account for mixed states, even though no mean-field
solution has been found to stabilize a 4kF-CDW/2kF-
CDW/2kF-SDW state. Finally, Mazumdar et al. pointed
out that transverse interactions allow us to account
for complex mixed states, that he denoted BCSDW
for bond-charge-spin-density waves. These mixed
states are nevertheless far from being understood.

4.2. Spin-Peierls Transition in (BCPTTF) 2X
As mentioned previously, irradiation damage made

the study of the SP transition in TMTTF salts
impossible. To overcome this difficulty, the SP state
was studied in the (BCPTTF)2X series, in which such
effects were never observed.141,142

BCPTTF (benzocyclopentyltetrathiafulvalenium) is
a non-centrosymmetric molecule (see Figure 1),94

which gives 2:1 salts with PF6 and AsF6, isostructural
to the (TM)2X ones. In (BCPTTF)2X, charges are more
localized (∆F ∼ 1000 K94) than in TMTTF salts,
probably due to a 4kF-BOW. (The best evidence for
4kF-CDWs is given by dielectric susceptibility and
NMR measurements, which have not been performed
on all molecular conductors so far.) The magnetic
susceptibility øs exhibits above 100 K a Bonner-
Fisher thermal dependence expected for a 1D quan-
tum S ) 1/2 AF chain (Figure 8). Below TSP ) 36 K
(32.5 K), a SP state is stabilized in (BCPTTF)2PF6
(AsF6), as evidenced by a strong decrease of øs
together with the appearance of satellite reflections
at the (1/2, 1/2, 1/2) wave vector.142 2kF diffuse scattering
is observed up to T0 ) 100 K (120 K) in the PF6 (AsF6)
salt, indicating a strong regime of pretransitional
fluctuations. At this temperature, the correlation
length along the chains is found to be equal to the a
parameter, that is, the distance between spins. The
behavior of these 1D fluctuations is indicated in
Figure 10.

The most important result is that øsp starts to
deviate from the Bonner-Fisher value at the tem-
perature T0, that is at the temperature at which
critical fluctuations start to pair neighboring spins.
This mechanism has been checked by theoretical
calculations by Dumoulin et al.159 by a microscopic
treatment of the spin-phonon coupling, combining
functional integral and transfer matrix methods.

It is noteworthy that these conclusions are only
correct because the (BCPTTF)2X compounds are in
the adiabatic limit. In this limit, the spin excitations
are faster than the lattice vibrations, so that the
spins can follow the lattice. To be more quantitative,
Schulz143 showed that the relevant parameters to
compare are the bare frequency of the phonon mode
Ω0 and the mean-field temperature of the SP transi-
tion TF. In our case, this temperature is roughly equal
to the temperature at which structural fluctuations
build up. The ratio TF/Ω0 g 1 corresponds to the
adiabatic limit, where a soft mode is expected, while
TF/Ω0 e 1 corresponds to the nonadiabatic limit. In
(BCPTTF)2X, Ω0 ∼ 60 K, which gives TF/Ω0 ∼ 2 and
confirms the adiabatic situation. Note that in inter-
mediate cases, TF/Ω0 ∼ 1, hardening of the phonon
modes is expected, which has been observed in the
inorganic CuGeO3 compounds.145

To confirm this analysis, dynamic studies would
be needed. However, in organic compounds, inelastic
neutron scattering measurements are difficult to
perform because of the small size of crystals.

4.3. Charge-Density Waves in M(dmit) 2
Compounds

The observation of a metallic state in molecular
materials pushed chemists to synthesize new precur-

5622 Chemical Reviews, 2004, Vol. 104, No. 11 Ravy



sors. We already mentioned some criteria to obtain
“good” molecules. In this respect, the study of TM and
BEDTTTF salts has clearly indicated that strong
lateral S-S or Se-Se interactions could hinder the
appearance of 1D instabilities.

Increasing the number of S atoms around the
molecule was the strategy used by Cassoux et al. to
synthesize materials based on the [M(dmit)2]n- (refs
146 and 147) complex, where dmit is dimercapto-
isodithione and M is a metallic atom like Ni, Pd, or
Pt (see Figure 1). These acceptors form different
phases with donors such as TTF,147,148 NMe4,149 or
Cs.150 Among these phases, TTF[Ni(dmit)2]2 is metal-
lic at ambient pressure and a superconductor at
1.6 K under 7 kbar.35 The isostructural salt R′-TTF-
[Pd(dmit)2]2 exhibits metallic behavior at room tem-
perature and an activated conductivity below 220 K.
Under 20 kbar, this insulating phase disappears and
superconductivity is stabilized below 6 K.151 These
phases consist of segregated stacks of TTF and

M(dmit)2 molecules, running in the b directions (see
Figure 11). The M(dmit)2 molecules are regrouped in
(b,c) slabs, in which close S-S contacts are observed.
However, despite the 2D characteristics, these com-
pounds exhibit typical 1D ground states.

Figure 12 displays a X-ray precession photograph
of the (hk0) reciprocal at room temperature obtained
on the R′-TTF[Pd(dmit)2]2 compound. Diffuse lines
(corresponding to diffuse sheets in the reciprocal
space) at the reduced wave vectors q1 ) 0.5b* and
q2 ) (0.31b* are clearly visible. This diffuse scat-
tering is characteristic of 1D CDW instabilities. In
fact, two phase transitions are observed in this
compound. The first one, at T1 ) 150 ( 10 K,
corresponds to the condensation of the diffuse scat-
tering in satellite reflections at the reduced wave
vector (0, 0.5, 0), and the second one, occurring at
T2 ) 105 ( 10 K, corresponds to (0, (0.31, 0) satellite
reflections. Note, however, that long-range order is
never observed, because the width of the satellite

Figure 10. Magnetic susceptibility as a function of temperature (left): top, calculations of ref 142 (straight curve) and of
ref 76 (dotted line); bottom, experimental points from (BCPTTF)2AsF6, together with calculations with (solid curve) and
without lattice fluctuations (dotted curve). Here, J ) 140 K and T0 ∼ 120 K. Right: 2kF response function ∼I/T and reduced
correlation length along the spin chains a/ê.

Figure 11. Crystal structure of TTF[Ni(dmit)2]2: (a) projection onto the (010) planes; (b) parallel view along [010] of the
Ni(dmit)2 slabs.
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reflections is larger than the experimental resolution.
This unusual situation is all the more complex
because two other types of broad satellite reflections
are observed at lower temperature (25 K), located at
2q2 ) (0.62b* and q1 - q2 ) 0.81b*. In the TTF-
[Ni(dmit)2]2 compound, the situation is simpler: only
one series of diffuse sheets at (0.40b* is observed
from 300 K down to 40 K, the temperature at which
3D correlations build up. Here also, long-range order
is not stabilized.

These complex behaviors are impossible to under-
stand by comparison to the TTF-TCNQ componds,
in which “only” 2kF- and 4kF-BOWs were observed.
The solution came from the band structure calcula-
tion of Canadell et al.,156,157 using the extended
Hückel method to model molecular orbitals. The key
to understand the electronic structure is to note that
the energy difference between HOMOs and LUMOs
of M(dmit)2 molecules (0.4 eV) is smaller than that
in other organic molecules. Because of the good
overlap between orbitals along the chains, the elec-
tronic dispersion along the chains is larger than this
energy. The band structure of the Pd(dmit)2 slabs of
R′-TTF[Pd(dmit)2]2 is indicated in Figure 13.

This unique situation means that HOMOs of
M(dmit)2 can give electrons, which is unusual for an
acceptor. Note, however, that the determination of
the Fermi level is not possible from this calculation.
The experimental reduced wave vectors Q1 ) q1/2
and Q2 ) q2/2 are indicated in Figure 13. Given the
uncertainties concerning the charge transfer, two
interpretations of the wave vector values can be
given:

(1) The four LUMO bands are nested by q1, and
the upper pairs of the HOMO bands are nested by
q2. The HOMO’s lower pair would be nested by q1 -
q2. Charge conservation thus implies a charge trans-

fer of F ) 1, which allows q1 to nest the TTF band.
[Denoting kF

L, kF
H, and kF

T the Fermi wave vectors of
the Pd(dmit)2 LUMOs, HOMOs, and TTF bands,
respectively, charge conservation gives 4(4kF

L) +
4(4kF

H) + 2(4kF
T) ) 8, because eight holes come from

four LUMOs.]
(2) The four LUMO bands are nested by q1, and

the four HOMO bands are nested by q2. 2q1 would
then nest the TTF band. The charge transfer would
be F ) 0.76, which is closer to the values observed in
other TTF compounds.7

Both solutions are in agreement with the calcula-
tion within 0.05 eV errors. They show how to remove
all electrons from the Fermi surface with only two
modulations. These calculations also allowed one to
understand the behaviors of other M(dmit)2 salts.157,158

They confirm the importance of tight binding meth-
ods in molecular materials. Indeed, even if ab initio
calculations start to be tractable on much simple
inorganic systems,50 they are still to be improved on
molecular conductors.

Finally, these compounds show that CDWs can be
in competition with superconductivity in organic
systems, which suggests a more conventional classi-
cal BCS mechanism of pairing.

5. Experimental Results: Disorder Effects

5.1. Introduction
Effects of impurities and defects on the physical

properties of materials is an important field of
investigation in condensed matter physics. In this
section, we will restrict ourselves to the influence of
disorder on the ground states we have described
previously.

5.1.1. Random Fields and Random Bounds
It is useful to start this section by introducing the

random field Ising model (RFIM),163,162 which is an
intuitive model for quenched disorder. The system

Figure 12. X-ray precession photograph of the (hk0)
reciprocal at room temperature obtained on the R′-TTF-
[Ni(dmit)2]2 compound. The chain direction b is horizontal.
White arrows indicate the diffuse sheet located at q1 )
0.5b*, and black arrows indicate the diffuse sheets located
at q2 ) (0.31b*.

Figure 13. Band structure of Pd(dmit)2 in R′-TTF[Pd-
(dmit)2]2. The Γ, Y, Z, and M points are (0, 0), (b*/2, 0),
(0, c*/2), and (0, c*/2). The four upper bands are built from
LUMOs of Pd(dmit)2 molecules, and the four lower bands
are from HOMOs. The Fermi levels noted εf, ε′f, and ε′′f
correspond to charge transfers of 0, 1/2, and 1, respectively.
Note that TTF bands are not represented here (reprinted
with permission from ref 156, copyright 1989 EDP Sci-
ences).
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of Ising variables already introduced in section 2.4
is perturbed by the presence of quenched random
fields hi, such that

which couples linearly to the pseudospin variables
in the following way:

The Jij constants can also be random: this is the
random bond Ising model (RBIM). This model is used
to study spin glasses.165 In that case, the Jij constants
are randomly positive (ferromagnetic-like) or nega-
tive (antiferromagnetic-like), which generates a frus-
tration. This mean-field RBIM of Sherrington-
Kirkpatrick166 has been used to interpret experiments
on disordered molecular conductors (see section 5.3).

The RFIM is well adapted to different types of
materials, like disordered magnetic systems164 or
molecular conductors in the presence of quenched
disorder. In the following, we will only consider cases
were the Jij conplings are limited to first neighbors
(we will note in particular Jij ) δi+1,jJ). The first
characteristic of this kind of model is the competition
between two energies: the exchange energy J, which
favors long-range order, and the field energy, which
favors the local ordering of the spins. Two limits have
to be distinguished:

(1) The strong field (strong pinning) limit h0 . J,
in which each field polarized a domain around it.
Long-range order is impossible, and there is no phase
transition.

(2) The weak field (weak pinning) limit, for which
the existence of a phase transition depends on the
dimensionality of the space D. In the d ) 1 Ising case,
Imry and Ma173 have proposed that if D e 2, the
systems will break into finite size domains, with the
domain wall energy being compensated by the field
energy gained by placing domains strategically. If
D > 2, the creation of such domains is not favorable
and long-range order settles in. Over the years, the
“domain argument” of Imry and Ma has been im-
proved174,175 and the result well established: for the
d ) 1 Ising model the critical dimension below which
no phase transition occurs is Dc

1 ) 2.
For a d ) 2 order parameter, like XY spins, the

domain argument can be used and give a critical
dimension Dc

1 ) 4,176-178 indicating that, in real
systems, no LRO is expected. This case, which can
also model the pinning of vortices in superconductors,
corresponds to pinning of incommensurate CDWs.179

To briefly summarize the theoretical results, let us
recall that, in a 2kF-CDW state (the reasoning would
be the same for SDWs, CDWs, or BOWs, with 2kF or
4kF wave vectors), the charge density reads

The first model of CDW pinning was proposed by
Fukuyama, Lee, and Rice (FLR).176-178 In this model,
only the phase variations of the CDW are considered

because, at low temperature, the amplitude excita-
tions are too high in energy to be excited. This has
been confirmed by inelastic neutrons47 and X-ray
measurements187 on blue bronze K0.3MoO3. The CDW
is considered as an elastic medium, characterized by
two elastic constants, C| and C⊥, in the chain direc-
tion and transverse to the chains, respectively. The
elastic part of the Hamiltonian reads

The Hamiltonian of interaction between the CDW
and the impurities reads, in direct space and in
Fourier space,

where v(r - rm) is the potential of interaction of an
impurity at the site rm, and vq and Fq are the FTs of
v(r) and F(r), respectively.

For a CDW, two terms dominate this equation:
184,185,197

(1) The bakscattering term at q ∼ (2kF is respon-
sible for the pinning of the CDW phase on the
impurity. In the FLR model, where the impurity
potential is supposed to have the simple form
v(r - rm) ) Uδ(r - rm), this term dominates eq 5.5.
It has strong consequences for the structural features
of molecular conductors, as we shall see in section
5.4.

(2) The forward scattering term at q ∼ 0 is
responsible for phase deformation around impurities
in order to screen the charge impurity, acting like
low-temperature Friedel oscillations.186 This term
alters the shape of the CDW peaks, which has been
observed in inorganic systems,188 but in molecular
compounds, no clear effect has been measured, so far.

As for the RFIM, there are two kinds of pinning,
which depend on the relative importance of the
elastic term (eq 5.4) and the interaction term (eq 5.5),
which are in competition: strong pinning is expected
when the interaction energy dominates; weak pin-
ning is expected otherwise. In the strong pinning case
the CDW phase 2kF‚r + æ(r) is the same at all
impurity sites. An experimental illustration of strong
pinning will be given in section 5.4. When elastic
energy dominates, the situation is more subtle. The
Imry-Ma domain argument was first presented, and
the CDW ground state was thought of as an assembly
of domains of constant phase æ(r), called Lee-Rice
domains. But this description proved to be incom-
plete. In a 3D system, the region in which the phase
changes has to be as small as possible.189 Theoretical
works then considered a structure with small and
large scale variations.189-191 Other authors192,193 have
stressed the importance of Friedel oscillations around
impurities, and the importance of their phase shift.197

Finally, this problem of CDW pinning has been
revisited recently, due to its similarity with vortices’
pinning in superconductors.180,181 The ground state
of the weak pinning case is described by a Bragg
glass,182-185 in which vortices’ positions (or the CDW
phase) have a quasi-long-range order (QLRO) for

〈hihj〉 ) δijh0
2 (5.1)

H ) -
1

2
∑
i,j

JijSiSj - ∑
i

hiSi (5.2)

F(r) ) F0 + δF sin(2kF·r + æ(r)) (5.3)

Hel ) ∫d3r (C|/2(∂xæ)2 + C⊥/2(∂⊥æ)2) (5.4)

Himp ) ∑
m
∫d3r v(r - rm) F(r) ) ∑

m
∑
q

vqF-qeiq·rm

(5.5)
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distances larger than the Lee-Rice domain sizes. (In
quasi-long-range order, correlation functions have
power laws instead of exponential ones for SRO.) No
phase defects such as CDW dislocations are expected
in this phase.

The consequences of these concepts for scattering
experiments are important. First of all, note that in
RFIM models the order parameter correlation func-
tion is predicted to decrease exponentially, either in
the strong field case162 or in the weak field case.195

Lorentzian squared line shapes are thus expected in
three dimensions. This has been observed in high-
resolution synchrotron studies performed on the AO
transition of (TMTSF)2ClO4.169 The effects of the
RFIM (and RBIM) on disordered (TM)2X compounds
will be discussed in section 5.3.

In the CDW cases, though Lorentzian squared line
shapes are also expected in strong pinning, the
situation is more complex in weak pinning. At short
distance, an exponential decay is predicted,194 leading
to Lorentzian squared wings in Fourier space, while
the QLRO expected should give diverging peaks, with
power law exponents.184,185,213 This latter feature has
never been observed so far.

Nevertheless, it is now well-established that CDW
long-range order is destroyed by impurities, as pre-
dicted by the above-mentioned theories. Indeed,
diffraction experiments clearly show that introduc-
tion of disorder broadens the 2kF satellite reflections,
either in blue bronze,196-198 NbSe3,199-202 or in mo-
lecular conductors, as we shall see. Moreover, squared
Lorentzian line shapes are usually observed, showing
that the Lee-Rice domain image is relevant. In
section 5.4 we will present a situation in which the
strong pinning in clearly observed.

5.1.2. Disorder Lines

To conclude this brief introduction to structural
effects of disorder, let us discuss the issue of short-
range order competition. From the Landau theory of
phase transition, we know that when different long-
range orders are present in a generalized phase
diagram, the separating lines are first- or second-
order transition lines. Is there a line separating the
SROs corresponding to these phases? In other words,
how do the short-range orders transform into each
other? There is no clear answer to this question, but
it has to do with disorder lines, a concept introduced

by Stephenson from the exact solution of the Ising
model.203,204

Let us consider two ordered phases, characterized
by the reduced wave vectors q1 ) (0, 1/2) and q2 )
(1/2, 1/2). At higher temperature (say), the correspond-
ing SRO will give rise to diffuse scattering centered
at these reduced wave vectors. Phenomenologically,
three transformation processeses from the q1-SRO to
the q2-SRO can occur, as depicted in Figure 14. This
classification is not rigorous but relies on experiments
performed on molecular systems. The transformation
can occur through

(1) a disorder line of the first kind. In this situation,
the q1 ) (0, 1/2) peak first becomes squared Lorent-
zian (on the disorder line) and then splits into two
incommensurate scatterings (on a so-called Lifschitz
line109,205), which then shift toward the q2-SRO.

(2) a disorder line of the second kind, in which the
systems disorder before changing of the SRO.

(3) a coexistence of SROs. The q1-peak disappears
gradually, while the q2 one emerges. There are no
disorder lines.

The physical origin of disorder lines is the existence
of microscopic competing interactions in the systems.
Diffuse scattering typical of disorder lines has been
observed in substituted perylene salts, as discussed
in the next section. Coexistence of fluctuations is
more usual and has been observed in disordered
(TM)2X salts.

5.2. Disorder Study in Substituted Perylene Salts
The polyarene has given rise to interesting families

of molecular conductors.206 The substituted perylene
radical cations CPP (1,2,7,8-tetrahydrodicyclopenta-
[cd,lm]perylene) and TMP (3,4,9,10-tetramethylper-
ylene) have been synthesized, and 2:1 charge-transfer
salts of general formula (M)2X-S have been obtained,
with M ) CPP or TMP, X ) PF6 or AsF6, and S )
CH2Cl2.108,109 These isostructural salts (monoclinic
space group C2/m) consist of stacks of radical cations
in the c direction, separated by chains of alternating
X and S molecules (X/S chains). These compounds are
quarter-filled, as all 2:1 charge-transfer salts. At
room temperature CPP salts are slightly more con-
ducting (50 (Ω cm)-1) than those of TMP (5 (Ω cm)-1).
CPP salts undergo a Peierls transition (at 158 and
170 K for the PF6 and AsF6 salts, respectively) with
the stabilization of a qP ) (0, 1/2, 1/2) superstructure.

Figure 14. Schematic representation of the diffuse scattering, in three processes for the q1-SRO (blue) into q2-SRO (red)
transformation.
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In TMP salts, 2kF diffuse lines appear below 200 K
but never condense down to 20 K. Interestingly
enough, 13C NMR measurements clearly show 14
locally resolved 13C Knight-shift sets and only 7 lines
in CPP, as expected by symmetry. As we mentioned
in section 4.1, this is a signature of the presence of a
4kF-CDW.

X/S chains were found to have two symmetrical
positions in the unit cell. In the CPP salts all X/S
chains were 3D ordered in their channels. However,
in TMP salts a complex disorder was observed.
Figure 15 represents a typical X-ray diffuse scatter-
ing pattern of l ) 1/2 obtained in (TMP)2AsF6CH2Cl2.
This pattern cannot be understood by classical con-
cepts such as those described in section 2.4, because
it is characteristic of a system close to a disorder line
of the first kind. Indeed, the configuration of the X/S
chains is due to the direct electrostatic interactions
between the chains and to indirect interactions
through the molecular chains in the two possible
directions a and b. Such a strange X-ray pattern has
been correctly simulated (Figure 15) from an Ising
model with competing interactions between X/S
chains.

Consequently, it has been suggested that, in the
CPP salts, the absence of disorder is due to the
screening of these mediated interactions by the
electron gas of the CPP chains. In TMP, the 4kF-CDW
charge localization prevents this screening and the
competing interactions disorder the A/S sublattice.
This example confirms that, in molecular conductors,
very tiny differences in the radical cation properties
(electrochemical measurements show that the in-
tramolecular Coulomb repulsion could be estimated
to be 0.65 and 0.56 eV for TMP and CPP, respec-
tively108) can lead to very different ground states.

Finally, let us point out again that, in this case,
the 4kF-CDW clearly competes with the 2kF-BOW, as
was suggested in section 4.1.

5.3. Disorder Effects in (TM) 2X
Disorder effects in (TM)2X salts have been studied

in three different compounds: the anionic solid
solutions (TM)2XxY1-x, the molecular solid solutions

(TMTTF)x(TMTSF)1-xX, and the series (TMDTDFS)2X,
where TMDTDSF is the hybrid S-Se molecule (see
next section).

A key point to understand disorder in (TM)2X is
that the electrostatic potential experienced by an
anion depends on its environment, as depicted in
Figure 16. As indicated in Figure 7, anions have short
contacts with two neighboring molecules, related by
a symmetry center. When these molecules are the
same, the potential is symmetric. When the mol-
ecules are different, as in solid solutions, the potential
is asymmetric and can be modeled by adding the
effect of a field h, which is random if the disorder is
random. On the other hand, when anions order with
different wave vectors (see Table 2), as is the case
for the same anion in different environments (ClO4
in TMTTF and TMTSF salts) or for different anions
in the same environment (ClO4 and ReO4 in TMTSF
salts), the interactions between anions will be mod-
eled by random bonds. This will be discussed in the
next three sections.

5.3.1. Disorder Effects in TMDTDSF Salts

The molecule TMDTDSF (tetramethyldithiadi-
selenafulvalenium) is a hybrid between the TMTSF
and TMTTF molecules152,153 (see Figure 1). (TMDT-
DSF)2X salts isostructural to the Bechgaard and the
Fabre salts have been synthesized with X ) PF6,
AsF6, SbF6, ReO4, BF4, and ClO4, as a link to the
selenium- and sulfur-based families.

The TMDTDSF molecules are not centrosymmetric
and can take two orientations on the same site. The
resulting static orientational disorder has been fully

Figure 15. (a) Precession pattern (λCuKR) of the l ) 1/2 reciprocal plane of (TMP)2AsF6CH2Cl2 and (b) its best simulation.

Figure 16. Schematic representation of the potential
experienced by an anion in a Se-Se (left), S-S (center), or
S-Se (right) environment (see also Figure 7).
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characterized159 by the study of the X-ray diffuse
scattering. Indeed, this type of orientational disorder
gives rise to a Laue scattering, well described by
formula 2.12. Due to the large difference of electrons
between S and Se, the contrast term ∆F is very
strong and gives large clouds of diffuse scattering. It
has been shown that the orientation of the molecules
is random, which means that no preferential orienta-
tion toward the anion was observed and that there
is no correlation between orientations of neighboring
molecules. However, as expected from the difference
of size between S and Se, the molecules slightly move
in the a direction in order to accommodate the
difference of size of atoms in close contact. This size
effect, which is due to a coupling between the
orientational and the displacement disorder, gives
rise to asymmetry in the diffuse scattering described
by the term in eq 2.13. The displacements are
estimated at about 0.10(5) and 0.03(1) Å for first- and
second-neighbor molecules, respectively. The first-
neighbor size effects amount to the dimerization
amplitude of the organic stacks in the (TMTTF)2X
family but are larger than that of the Bechgaard
salts.

The results for octahedral anions have already
been discussed in section 4.1. The AO characteristics
of (TMDTDSF)2X are summarized in Table 2. In the
case of the ReO4 anion, a phase transition is observed,
at a temperature which is the exact average of that
of TMTTF and TMTSF salts. As the wave vectors are
the same for both series, only random fields contrib-
ute to the disorder. The LRO observed in the ReO4
salt suggests a weak coupling situation (h0 < J). At
variance, the quasi-phase transition observed in the
BF4 salts indicates that the random fields dominate
the couplings (h0 > J). Finally, for the ClO4 salt only
(1/2, 1/2, 1/2) SRO is observed. In that case, random
fields and random bonds kill the anion ordering.

5.3.2. Solid Solutions (TMTSF)2(ReO4)1-x(ClO4)x

These solid solutions were prepared in order to
study the competition between anion orderings of
different periodicities: the q1 ) (1/2, 1/2, 1/2) AO of
(TMTSF)2ReO4 and the q2 ) (0, 1/2, 0) AO of (TMTSF)2-
ClO4. The random character of the solid solution was
checked by studying the resulting Laue scattering.161

The results are summarized in Figure 17.
True phase transitions, leading to LRO, are ob-

served on the ReO4-rich side of the phase diagram
(x < 0.5). This is consistent with the observation of a
clear energy gap in the x ) 0.35 compound.168 On the
ClO4-rich side, LRO exists for x > 0.97, together with
superconductivity.168 For x < 0.97, q2-SRO suppresses
the superconductivity and stabilizes the 2kF-SDW
ground state.168 This effect is similar to the quench
of the q2-AO in pure (TMTSF)2ClO4, where the
reduction of the q2-ordered domains due to rapid
quenching destabilizes the superconductivity, to the
benefit of the 2kF-SDW.169 For the intermediate
concentrations 0.72 < x < 0.97, coexisting SROs are
clearly observed, in a way corresponding to the third
process defined in section 5.1.2. The absence of
disorder lines has been ascribed to the different
mechanisms involved in the AO, driven by the

electron gas in the ReO4 salt and by direct electro-
static interactions in the ClO4 one.

Surprisingly, this phase diagram is well accounted
for by the RBIM mean-field model of Sherrington and
Kirkpatrick.166 In this model, the coupling constants
are taken to be equal to the transition temperatures,
considering positive constants if the coupling is
antiferro-like (in all the directions of ReO4) and
negative ones if the order is ferro-like (in the a and
c directions of ClO4). (Note that, for the sake of
presentation, the sign conventions of the coupling
constants have been changed here.) Here J1 ) 176
K and J2 ) -24 K. The mean interaction for a
concentration x is

and its root-mean-square ∆J is

The model predicts167 a phase transition if |〈J〉| > ∆J
and a vitreous phase in the case of |〈J〉| < ∆J.

The curves 〈J〉/kB(x) and ∆J/kB(x) are represented
in Figure 17. Their intersection points x1 ) 0.53 and
x2 ) 0.97, between which SRO is predicted, are close
to the experimental values.

5.3.3. Solid Solutions (TMTSF)1-x(TMTTF)xReO4

The last type of disorder studied in (TM)2X salts
concerns the solid solutions TMTTF/TMTSF. Earlier
studies had mostly focused on the low-x concentration
limit of the PF6

207 and ClO4 salts.208 A general study
of the solid solution (TMTSF)1-x(TMTTF)xReO4 has
been performed on the whole x range,116 showing that
the electronic and structural properties do not behave
monotonically with x.

The main observation is that the molecules are not
randomly distributed but tend to alternate and to
form a well-defined structure, characterized by the

Figure 17. Phase diagram (T, x) of the solid solutions
(TMTSF)2(ReO4)1-x(ClO4)x. For the reasons explained in the
text, the transition temperatures have been chosen nega-
tive on the ClO4-rich side and positive on the ReO4-rich
side. Squares correspond to LRO phase transitions, while
circles indicate the occurrence of SRO.

〈J〉/kB ≡ (1 - x)J1 + xJ2 ) 176 - 200x (5.6)

∆J/kB ≡ xx(1 - x)
2

|J2 - J1| ) 200xx(1 - x)
2

(5.7)
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(0, 1/2, 1/2) wave vector. In the x ∼ 0.55 compound,
which is closer to the perfect 1/2 composition, the
alternate order extends to ∼300 Å in the chain
direction, while x ∼ 0.2 and ∼0.8 solid solutions only
exhibit local order. The alternation of the molecules
induces a strong (∼0.2 eV) 4kF potential along the
chain, very similar to a 4kF-CDW.

At variance with the (TMDTDSF)2ReO4 salt, for
which the anion ordering transition is intermediate
between that of (TMTSF)2ReO4 and (TMTTF)2ReO4,
the x ) 0.55 compound undergoes the AO transition
at 75 K. The interpretation of this strong decrease
of the transition temperature is that the 2kF-BOW
response function driving the (1/2, 1/2, 1/2) anion
ordering is decreased by the occurrence of the 4kF-
CDW due to the molecule ordering. Qualitatively, the
“heteropolar” distribution of charge diminishes the
resonating character of the 2kF-BOW response func-
tion.72,73,90 This is consistent with many features
observed in charge ordered compounds (see section
4.1.4).

5.4. Pinning of Charge-Density Waves

The properties of 1D solids change drastically when
disorder is introduced. In incommensurate 2kF-BOW
states, for example, a non-ohmic extracurrent is
measured when the electric fields are larger than a
threshold value.41 This nonlinear conductivity, dis-
covered in NbSe3,170 has also been observed in the
blue bronze K0.3MoO3

171 and even in the 2kF-SDW of
(TMTSF)2NO3.172 The physical origin of this extra-
current is the sliding of the density wave: it is a
collective effect. The threshold field is due to the
pinning of the CDW on defects or impurities always
present in real materials. Though the loss of LRO is
clearly established experimentally, microscopic in-
formation on the pinning mechanism in the vicinity

of the impurity is difficult to obtain. However, in solid
solutions such as (TTF)x(TSeF)1-x-TCNQ, the obser-
vation of the intensity asymmetry effect described in
section 2.3 demonstrates the existence of strong
pinning around the substituent molecules.

The (TTF)x(TSF)1-x-TCNQ and (HMTTF)x(HMT-
SF)1-x-TCNQ solid solutions were studied by the so-
called Laue monochromatic or fixed-film fixed-crystal
method.12,210,211 (In the following these chemical
formulas will be noted (TF)x and (HF)x.) Figure 18
displays a set of X-ray photographs of a pure com-
pound in its 1D fluctuating regime and of the same
compound substituted. In TTF-TCNQ, diffuse lines
are clearly seen at 2kF ) 0.295b* and 4kF ) 0.59b*.
These 2kF and 4kF lines are visible between 52 and
150 K and between 45 and 300 K, respectively.7 In
the solid solution (TF)x)0.97, these lines are also
observed. But contrary to the case of the pure
compound, the diffuse line at +4kF appears in white
in the photograph. (Although it is more convenient
to use the (4kF notation to describe the photographs
of Figure 18, the best way to define the position of a
line is by its angular position with respect to the
closer Bragg reflection. Indeed, because of the Friedel
law, a line located at small angles with respect to
the Bragg layer is at +4kF on the left side of the
photograph but at -4kF on the right side.) The 2kF
diffuse lines do not show this effect. In (HM)x)0.05, the
white lines are visible at +2kF. Note that this effect
has been observed on the 2kF and 4kF diffuse lines
in a solid solution enriched in HMTTF, (HM)0.87.211

The photographs also exhibit a diffuse background
consisting of three broad horizontal stripes. This
diffuse scattering is the Laue scattering Isub (eq 2.11)
due to the substitutional disorder between S- and Se-
based molecules. As the molecules contain four chal-
cogen atoms, the contrast term ∆F of eq 2.11 is very
strong, which explains the high intensity of the Laue

Figure 18. Diffraction patterns (λCuKR) from (top) TTF-TCNQ at 60 K (A) and TTF0.97TSF0.03-TCNQ at 40 K (B) [Small
and large black arrows point toward 2kF and 4kF lines.] and (bottom) HMTSF-TCNQ at 25 K (left) and HMTTF0.05HMTSF0.95-
TCNQ at 20 K (right) [Black arrows point toward 2kF lines. White arrows point toward 4kF lines.].
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scattering. At last, let us note that all the white lines
are observed on the large angles side.

As we shall see, this is due to a coupling between
the CDW periodic distortion and the substitutional
disorder, that is, to the pinning of the CDW. It is a
direct consequence of the asymmetric (or holographic)
term given by eq 2.13.

First of all, let us remark that the effect allows one
to identify the type of chain (donor or acceptor)
originating the CDW. The observation of white lines
demonstrates that (1) the HTTSF chain undergoes
the 2kF instability, (2) the HMTTF chain undergoes
both the 2kF and 4kF instabilities, and (3) the TTF
chain undergoes the 4kF instability. Such an evolu-
tion confirms that Coulomb repulsions are larger in
S-based molecules because these molecules are less
polarizable according to the HMTSF-HMTTF-TTF
sequence.7 In the case of (TF)x solid solution, the
absence of 2kF white lines confirms that this instabil-
ity develops on the TCNQ chains.

Whites lines are observed in the whole temperature
range (300-25 K), which means that the 3D order is
not stabilized. This is consistent with the loss of long-
range order observed in all CDW systems. The width
of the lines is larger than the experimental resolu-
tion, which indicates a short-range order in the chain
direction. From this width, one finds a correlation
length ê ∼ 40 ( 7 Å in the (TF)x)0.97 case above 50 K.
In (HF)x)0.05, this correlation length is ê ∼ 60 Å. The
CDW is thus coherent in a region comparable to the
average distance between impurities, which is ∼78
and 125 Å in (HF)x)0.05 and (TF)x)0.97, respectively.
This result, together with the observation of white
lines, demonstrates unambiguously the presence of
strong pinning in these solid solutions. It is one of
the strongest pieces of evidence of this phenomenon
in CDW systems. Let us now come back to the
interpretation of the asymmetry effect.

Although more complicated models can be in-
voked,210 the white line effect can be explained in a
simple way. Note that this interpretation was con-
firmed by numerical212 and analytical calculation.213

Let us consider a solid solution of molecules in which
each impurity at position ri pins a lattice distortion
given by

In this expression æ0 is the phase of the distortion at
the impurity site. By using the formalism of section

2.3, one finds that the diffuse scattering intensity is
the sum of three terms: (1) the Laue scattering
(eq 2.11), proportional to the contrast term squared
∆F2 and the impurity concentration (This term gives
the diffuse background.), (2) the 2kF scattering
(eq 2.12), proportional to the average structure factor
squared Fh 2 and to the amplitude of the distortion
squared u0

2 (This term is negligible here.), and (3)
the asymmetric scattering term IA (eq 2.13), which
in this case reads

The latter term transfers intensity from one side
of the Bragg spots to the other, as indicated in Figure
19. Moreover, IA is proportional to the cosine of the
pinning phase æ0. The sign of this variable can thus
be determined by the white line effect. The results
are indicated in Figure 20. For host materials rich
in S-based (Se-based) molecules, æ0 ) 0 (æ0 ) π). As
the electron density F(x) is in quadrature with the
displacive modulation u(x) [Because the electron
density increases when two molecules come closer,
one has F ∼ -(du/dx).], the phase of F(x) on the
impurity site can be deduced. F(x) and u(x) are
indicated in Figure 20.

As we mentioned in section 2.3, there is an elegant
way to understand the white line effect based on
holography and pictured in Figure 19. The principle
of holography is to register the interference between
a reference wave of amplitude Aref and a wave
scattered by an object of amplitude AobjecteiΦ. The total
intensity is given by

If the reference wave is more intense than the
diffracted one (Aref

2 . Aobject
2 ), which is the necessary

condition for holography to work, the information on
the phase Φ will not be lost, because Aref

2 is well-
known. It is easy to see that the three terms of
eq 5.12 represent the substitutional, the asymmetric,
and the displacive terms for the pinned CDW prob-
lem. The reference wave is the X-ray scattered by the
impurity, and the object is the CDW itself. As the
intensity scattered by the CDW is negligible, the

Figure 19. Schematic representation of the white line effect and its analogy with holography.

u(r) ) u0 sin(2kF·(r - ri) + æ0) (5.8)

IA(Q ) Qhkl ( 2kF) ∼ -Fh∆F(Q·u0) cos æ0 (5.9)

IHolo ) Aref
2 (5.10)

+ ArefAobjecte
-iΦ + CC (5.11)

+ Aobject
2 (5.12)
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holographic term dominates the diffraction and the
phase is retrieved.

The previous results give the following conclusions:
(1) In the vicinity of the impurities, the phase of

the lattice distortion satisfies the size effects. If the
impurity is smaller (larger) than the host molecules,
they get closer (push away) from the impurities. This
allows the constraints on the material to relax. This
gain of elastic energy can be considered as a pinning
mechanism of CDWs.12

(2) The CDW pins such that the electronic density
decreases on the less electronegative molecule. As
indicated by the charge-transfer values of pure
HMTSF-TCNQ and HMTTF-TCNQ, 0.74 and 0.72,
respectively, Se-based molecules are better donors
than S-based ones. This is consistent with the fact
that the electron density is minimum on the HMTSF
impurity. This is a mechanism similar to the screen-
ing by Friedel oscillations. In conclusion, the white
line effect is an unique effect which (i) gives unam-
biguous evidence of strong pinning in TTF alloys and
(ii) allows one to determine the phase of the CDWs
on the impurity sites. The value of this phase is
consistent with elastic and electronic mechanisms of
pinning.

6. Concluding Remarks
It is surprising that, after 30 years of study of

molecular conductors, new phenomena are still being
discovered and some of the most fascinating proper-
ties of these system still remain unexplained. As far
as the structural properties are concerned, the com-
plexity of the new states observed (CO, mixed states)
clearly asks for a more synthetic theory of the ground
states. In this respect, the interplay between struc-
tural (inter- and intramolecular modes, anion dis-
placements, and/or orientations) and electronic (1D
instabilities, electron correlations) degrees of freedom

makes this task especially difficult. Although theories
are mature enough to formally explore complex phase
diagrams, the relevant parameters at the origin of
the experimental ones are still missing.

In this review, we have shown that X-ray scattering
is an indispensable method to unveil novel properties.
In (TM)2X, subtle states mixing spin- and charge-
density waves have been discovered by X-ray diffrac-
tion. The observation of weak diffuse lines in numer-
ous systems, including metallic or more localized
ones, clearly indicates the importance and the con-
tinuity of the 2kF instabilities of the 1D electron gas
throughout the different families of molecular con-
ductors. The recent discovery of charge ordering on
the left side of the (TM)2X phase diagram allows one
to expect a unified view of the different families of
molecular conductors. Again, relevant parameters are
missing to achieve such a goal. The synthesis of
materials with similar structures, including solid
solutions, has clearly brought valuable information
on such parameters and reinforced the close col-
laboration with chemists and physicists in the field.

Among the little explored paths to progress in this
direction, high-resolution X-ray diffraction could
provide valuable information on charge-density,
through precise structure determination. Such tech-
niques should be more accessible with the develop-
ment of third generation synchrotron sources. Other
essential techniques, like inelastic and magnetic
neutron scattering, have not been carried out yet due
to the small size of the crystals. The study of
structural transition dynamics and magnetic struc-
tures of molecular conductors could be as surprising
as previous studies.

Finally, molecular conductors can be considered as
model systems and, despite the difficulties, we can
expect from their study a deeper understanding of
low-dimensional and strongly correlated systems.
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8. Note Added after ASAP Posting

This paper was posted ASAP on 10/27/04. The
Debye-Waller factor in the paragraph under eq 2.6
was corrected. A change was made to the compound
notation in the last full paragraph on the fifth page,
in the heading for section 4.3, in section 5.3.1, and
in the first paragraph of section 5.4. Changes were
made in eqs 3.3 and 3.12 and in the text under eq
3.3. A wording change was made in the last para-
graph of section 4.2 and the first paragraph of section
5.4. Reference 99 was updated. The paper was
reposted on 10/28/04.

Figure 20. Schematic representation of the molecular
displacements in the vicinity of an impurity molecule. The
colored curves are the corresponding variations of the
charge densities.
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(3) Guinier, A. Théorie et Technique de la Radiocristallographie;

Dunod: Paris, 1956.
(4) Krivoglaz, M. A. Theory of X-ray and Thermal Neutron Scatter-

ing by Real Crystals; Plenum: New York, 1969.
(5) Dénoyer, F.; Comès, R.; Garito, A. F.; Heeger, A. Phys. Rev. Lett.

1975, 35, 445.
(6) Kagoshima, S.; Anzai, H.; Kajimura, K.; Ishiguro, T. J. Phys.

Soc. Jpn. 1975, 39, 1143.
(7) For an exhautive review on the structural transitions in TTF-

TCNQ and related compounds, see: Pouget, J.-P. In Semicon-
ductors and semimetals; Conwell, E. M., Ed.; Academic Press:
New York, 1988; Vol. 27, pp 87-214.

(8) Pouget, J.-P.; Ravy, S. J. Phys. I 1996, 6, 1501.
(9) Coppens, P. X-ray charge density and chemical bonding; Oxford

University Press: Oxford, U.K., 1987.
(10) Sutton, M.; Nagler, S. E.; Mochrie, S. G. J.; Greytak, T.;

Bermann, L. E.; Held, G.; Stephenson, G. B. Nature 1991, 352,
608.

(11) Ravy, S. J. Phys. IV 2002, 12, Pr6-7.
(12) Brazovskii, S.; Pouget, J.-P.; Ravy, S.; Rouzière, S. Phys. Rev. B

1997, 55, 3426.
(13) Guinier, A. C. R. Acad. Sci. Paris 1938, 208, 1972. Preston, G.

D. Philos. Mag. 1938, 26, 855.
(14) Cowley, J. M. Surf. Sci 1993, 298, 336.
(15) Saldin, D. K.; Andres, P. L. Phys. Rev. Lett. 1990, 64, 1270.
(16) Cowley, R. A. Adv. Phys. 1980, 29, 1. Bruce, A. D. Adv. Phys.

1980, 29, 111. Cowley, R. A.; Bruce, A. D. Adv. Phys. 1980, 29,
219.

(17) Launois, P.; Ravy, S.; Moret, R. Phys. Rev. B 1995, 52, 5414.
Ravy, S.; Launois, P.; Moret, R. Phys. Rev. B 1996, 53, R10532.
Launois, P.; Ravy, S.; Moret, R. Phys. Rev. B 1997, 55, 2651.
Launois, P.; Ravy, S.; Moret, R. Int. J. Mod. Phys. B 1999, 13,
253.

(18) Akamatsu, H.; Inokuchi, H.; Matsunaga, Y. Nature 1954, 173,
168.

(19) Kepler, R. G.; Bierstedt, P. E.; Merrifield, R. E. Phys. Rev. Lett.
1960, 11, 503.

(20) Wudl, F.; Wobschall, D.; Hufnagel, E. J. J. Am. Chem. Soc. 1972,
94, 671.

(21) Coleman, L. B.; Cohen, M. H.; Sandman, D. J.; Yamagishi, F.
G.; Garito, A. F.; Heeger, A. J. Solid State Commun. 1973, 12,
1125.

(22) Ferraris, J.; Cowan, D. O.; Walatka, V.; Perlstein, J. H. J. Am.
Chem. Soc. 1973, 95, 948.

(23) Peierls, R. Quantum Theory of Solids; Oxford University Press:
London, 1955; p 108.
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(39) Sólyom, J. Adv. Phys. 1979, 28, 209.
(40) Emery, V. J. In Highly Conducting One-Dimensional Solids;

Devreese, J. T., et al., Eds.; Plenum: New York, 1979.
(41) Reviews on the Peierls transition are: (a) Grüner, G. Density
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